303 research outputs found
Changes in chromatin structure during processing of wax-embedded tissue sections
The use of immunofluorescence (IF) and fluorescence in situ hybridisation (FISH) underpins much of our understanding of how chromatin is organised in the nucleus. However, there has only recently been an appreciation that these types of study need to move away from cells grown in culture and towards an investigation of nuclear organisation in cells in situ in their normal tissue architecture. Such analyses, however, especially of archival clinical samples, often requires use of formalin-fixed paraffin wax-embedded tissue sections which need addition steps of processing prior to IF or FISH. Here we quantify the changes in nuclear and chromatin structure that may be caused by these additional processing steps. Treatments, especially the microwaving to reverse fixation, do significantly alter nuclear architecture and chromatin texture, and these must be considered when inferring the original organisation of the nucleus from data collected from wax-embedded tissue sections
Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity
Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations
Genome-Wide SNP-genotyping array to study the evolution of the human pathogen Vibrio vulnificus Biotype 3
Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains Of V. vulnificus are classified into three different biotypes. The newly emerged biotype 3 has been found to be clonal and restricted to Israel. In the family Vibrionaceae , horizontal gene transfer is the main mechanism responsible for the emergence of new pathogen groups. To better understand the evolution of the bacterium, and in particular to trace the evolution of biotype 3, we performed genome-wide SNP genotyping of 254 clinical and environmental V. vulnificus isolates with worldwide distribution recovered over a 30-year period, representing all phylogeny groups. A custom single-nucleotide polymorphism (SNP) array implemented on the Illumina GoldenGate platform was developed based on 570 SNPs randomly distributed throughout the genome. In general, the genotyping results divided the V. vulnificus species into three main phylogenetic lineages and an additional subgroup, clade B, consisting of environmental and clinical isolates from Israel. Data analysis suggested that 69% of biotype 3 SNPs are similar to SNPs from clade B, indicating that biotype 3 and clade B have a common ancestor. The rest of the biotype 3 SNPs were scattered along the biotype 3 genome, probably representing multiple chromosomal segments that may have been horizontally inserted into the clade B recipient core genome from other phylogroups or bacterial species sharing the same ecological niche. Results emphasize the continuous evolution of V. vulnificus and support the emergence of new pathogenic groups within this species as a recurrent phenomenon. Our findings contribute to a broader understanding of the evolution of this human pathogen
Human Endometrial Side Population Cells Exhibit Genotypic, Phenotypic and Functional Features of Somatic Stem Cells
During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women's cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC) population. Here we explore the hypothesis that human endometrial side population (SP) cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC
Characterisation of the Wildlife Reservoir Community for Human and Animal Trypanosomiasis in the Luangwa Valley, Zambia
Animal and human trypanosomiasis are constraints to both animal and human health in Sub-Saharan Africa, but there is little recent evidence as to how these parasites circulate in natural hosts in natural ecosystems. A cross-sectional survey of trypanosome prevalence in 418 wildlife hosts was conducted in the Luangwa Valley, Zambia, from 2005 to 2007. The overall prevalence in all species was 13.9%. Infection was significantly more likely to be detected in waterbuck, lion, greater kudu and bushbuck, with a clear pattern apparent of the most important hosts for each trypanosome species. Human infective Trypanosoma brucei rhodesiense parasites were identified for the first time in African buffalo and T. brucei s.l. in leopard. Variation in infection is demonstrated at species level rather than at family or sub-family level. A number of significant risk factors are shown to interact to influence infection rates in wildlife including taxonomy, habitat and blood meal preference. Trypanosoma parasites circulate within a wide and diverse host community in this bio-diverse ecosystem. Consistent land use patterns over the last century have resulted in epidemiological stability, but this may be threatened by the recent influx of people and domesticated livestock into the mid-Luangwa Valley
- …