2,085 research outputs found
Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment
We describe the results of experiments and mathematical analysis of the deformation of a free surface by an aggregate of magnetic particles. The system we study is differentiated from ferrofluid systems because it contains regions rich with magnetic material as well as regions of negligible magnetic content. In our experiments, the magnetic force from a spherical permanent magnet collects magnetic particles to a liquid–air interface, and deforms the free surface to form a hump. The hump is composed of magnetic and non-magnetic regions due to the particle collection. When the magnet distance falls below a threshold value, we observe the transition of the hump to a jet. The mathematical model we develop, which consists of a numerical solution and an asymptotic approximation, captures the shape of the liquid–air interface during the deformation stage and a scaling prediction for the critical magnet distance for the hump to become a jet
Optical spectroscopy of gan microcavities with thicknesses controlled using a plasma etch-back
The effect of an etch-back step to control the cavity length within GaN-based microcavities formed between two dielectric Bragg mirrors was investigated using photoluminescence and reflectivity. The structures are fabricated using a combination of a laser lift-off technique to separate epitaxial III-N layers from their sapphire substrates and electron-beam evaporation to deposit silica/zirconia multilayer mirrors. The photoluminescence measurements reveal cavity modes from both etched and nonetched microcavities. Similar cavity finesses are measured for 2.0 and 0.8 mm GaN cavities fabricated from the same wafer, indicating that the etchback has had little effect on the microcavity quality. For InGaN quantum well samples the etchback is shown to allow controllable reduction of the cavity length. Two etch steps of 100 nm are demonstrated with an accuracy of approximately 5%. The etchback, achieved using inductively coupled plasma and wet chemical etching, allows removal of the low-quality GaN nucleation layer, control of the cavity length, and modification of the surface resulting from lift-off
Exact Solution for the Critical State in Thin Superconductor Strips with Field Dependent or Anisotropic Pinning
An exact analytical solution is given for the critical state problem in long
thin superconductor strips in a perpendicular magnetic field, when the critical
current density j_c(B) depends on the local induction B according to a simple
three-parameter model. This model describes both isotropic superconductors with
this j_c(B) dependence, but also superconductors with anisotropic pinning
described by a dependence j_c(theta) where theta is the tilt angle of the flux
lines away from the normal to the specimen plane
Experimental research of terminal control area operations under uncertainty conditions
The experimental research of terminal control area operations under uncertainty conditions is considered. The Identification and assessment of threat factors in air traffic controller operation, identification of the point of controllers’ extreme operational conditions appearance and recommendations on associated errors capture and mitigation and improvement of airspace structure on the strategic planning phase are considered
Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases
This study aims at the early diagnostics of geoeffectiveness of coronal mass
ejections (CMEs) from quantitative parameters of the accompanying EUV dimming
and arcade events. We study events of the 23th solar cycle, in which major
non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently
reliably identified with their solar sources in the central part of the disk.
Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant
dimming and arcade areas and calculate summarized unsigned magnetic fluxes in
these regions at the photospheric level. The high relevance of this eruption
parameter is displayed by its pronounced correlation with the Forbush decrease
(FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz
component but is determined by global characteristics of ICMEs. Correlations
with the same magnetic flux in the solar source region are found for the GMS
intensity (at the first step, without taking into account factors determining
the Bz component near the Earth), as well as for the temporal intervals between
the solar eruptions and the GMS onset and peak times. The larger the magnetic
flux, the stronger the FD and GMS intensities are and the shorter the ICME
transit time is. The revealed correlations indicate that the main quantitative
characteristics of major non-recurrent space weather disturbances are largely
determined by measurable parameters of solar eruptions, in particular, by the
magnetic flux in dimming areas and arcades, and can be tentatively estimated in
advance with a lead time from 1 to 4 days. For GMS intensity, the revealed
dependencies allow one to estimate a possible value, which can be expected if
the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification
In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods
Angular dependence of novel magnetic quantum oscillations in a quasi-two-dimensional multiband Fermi liquid with impurities
The semiclassical Lifshitz-Kosevich-type description is given for the angular
dependence of quantum oscillations with combination frequencies in a multiband
quasi-two-dimensional Fermi liquid with a constant number of electrons. The
analytical expressions are found for the Dingle, thermal, spin, and amplitude
(Yamaji) reduction factors of the novel combination harmonics, where the latter
two strongly oscillate with the direction of the field. At the "magic" angles
those factors reduce to the purely two-dimensional expressions given earlier.
The combination harmonics are suppressed in the presence of the non-quantized
("background") states, and they decay exponentially faster with temperature
and/or disorder compared to the standard harmonics, providing an additional
tool for electronic structure determination. The theory is applied to
SrRuO.Comment: 5 pages, 2 figures, minor typos correcte
Maxwell's field coupled nonminimally to quadratic torsion: Induced axion field and birefringence of the vacuum
We consider a possible (parity conserving) interaction between the
electromagnetic field and a torsion field of spacetime. For
generic elementary torsion, gauge invariant coupling terms of lowest order fall
into two classes that are both nonminimal and {\it quadratic} in torsion. These
two classes are displayed explicitly. The first class of the type
yields (undesirable) modifications of the Maxwell equations. The second class
of the type doesn't touch the Maxwell equations but rather
modifies the constitutive tensor of spacetime. Such a modification can be
completely described in the framework of metricfree electrodynamics. We
recognize three physical effects generated by the torsion: (i) An axion field
that induces an {\em optical activity} into spacetime, (ii) a modification of
the light cone structure that yields {\em birefringence} of the vacuum, and
(iii) a torsion dependence of the {\em velocity of light.} We study these
effects in the background of a Friedmann universe with torsion. {\it File
tor17.tex, 02 August 2003}Comment: 6 page
How to extract reliable core-volume fractions from core-shell polycrystalline microstructures using cross sectional TEM micrographs
A reliable method of extracting core-volume fraction from TEM micrographs of core-shell polycrystalline
microstructures is presented. Three commonly used averaging methods based on a simple spherical
model are shown to consistently underestimate the core-volume fraction due to the interpretation of
a 3D structure from a 2D slice. The same trend is also revealed using Voronoi tessellated structures to
mimic polycrystalline ceramics. In some cases the underestimate is less than half the true core-volume
fraction.
We show that using a new maximum core-volume fraction methodology can improve the extracted
value to a consistent error of less than 5%. This approach uses a value taken from the largest core-volume
fraction measured from 10 grains that exhibit a core-shell microstructure. This provides increasing accuracy
and improvements in the confidence of the measurement when extracting core-volume fractions of
polycrystalline ceramics from 2D TEM micrographs
- …