We consider a possible (parity conserving) interaction between the
electromagnetic field F and a torsion field Tα of spacetime. For
generic elementary torsion, gauge invariant coupling terms of lowest order fall
into two classes that are both nonminimal and {\it quadratic} in torsion. These
two classes are displayed explicitly. The first class of the type ∼FT2
yields (undesirable) modifications of the Maxwell equations. The second class
of the type ∼F2T2 doesn't touch the Maxwell equations but rather
modifies the constitutive tensor of spacetime. Such a modification can be
completely described in the framework of metricfree electrodynamics. We
recognize three physical effects generated by the torsion: (i) An axion field
that induces an {\em optical activity} into spacetime, (ii) a modification of
the light cone structure that yields {\em birefringence} of the vacuum, and
(iii) a torsion dependence of the {\em velocity of light.} We study these
effects in the background of a Friedmann universe with torsion. {\it File
tor17.tex, 02 August 2003}Comment: 6 page