Abstract

We consider a possible (parity conserving) interaction between the electromagnetic field FF and a torsion field TαT^\alpha of spacetime. For generic elementary torsion, gauge invariant coupling terms of lowest order fall into two classes that are both nonminimal and {\it quadratic} in torsion. These two classes are displayed explicitly. The first class of the type FT2\sim F T^2 yields (undesirable) modifications of the Maxwell equations. The second class of the type F2T2\sim F^2 T^2 doesn't touch the Maxwell equations but rather modifies the constitutive tensor of spacetime. Such a modification can be completely described in the framework of metricfree electrodynamics. We recognize three physical effects generated by the torsion: (i) An axion field that induces an {\em optical activity} into spacetime, (ii) a modification of the light cone structure that yields {\em birefringence} of the vacuum, and (iii) a torsion dependence of the {\em velocity of light.} We study these effects in the background of a Friedmann universe with torsion. {\it File tor17.tex, 02 August 2003}Comment: 6 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020