73 research outputs found

    Airline Booking Limit Competition Game Under Differentiated Fare Structure

    Get PDF
    We address a two-firm booking limit competition game in the airline industry. We assume aggregate common demand, and differentiated ticket fare and capacity, to make this study more realistic. A game theoretic approach is used to analyze the competition game. The optimal booking limits and the best response functions are derived. We show the existence of a pure Nash equilibrium and provide the closed-form equilibrium solution. The location of the Nash equilibrium depends on the relative magnitude of the ratios of the full and discount fares. We also show that the sum of the booking limits of the two firms remains the same regardless of the initial allocation proportion of the demand

    Tumor-microenvironment-on-chip to Mimic Tumor Heterogeneity

    Get PDF
    Ductal Carcinoma In Situ (DCIS) is a non-invasive cancer that forms around breast milk ducts that can potentially progress into invasive breast cancer if untreated. Lack of models to study its diverse pathophysiology and differential response to treatments poses a challenge to develop standard treatment modalities with improved therapeutic outcomes. The traditional in vitro models such as cell monolayer are convenient but insufficient to represent the physiological characteristics of DCIS tumor microenvironment and often fail to predict clinical outcomes. The animal models effectively simulate the in vivo environment but also lack the ability to control the environmental parameters to match specific conditions making it difficult to address the heterogeneities in disease state and patient-to-patient variations. It is critical to develop a new DCIS model system that offers physiologically relevant features with high degree of control. In order to address this need, a novel microfluidic in vitro model was developed. A lumen structure to represent the milk duct in breast was generated along the microfluidic channel using a fluid dynamic phenomenon called viscous finger patterning in which as the less viscous fluid passes through, it leaves a continuous trail that makes a hollow tubular structure in the collagen hydrogel. Consequently, MCF-7 breast cancer cell lines were cultured along the lumen surface with BR5 stromal fibroblast in collagen hydrogel. A relatively straight, smooth lumen was achieved at a higher concentration of collagen gel by viscous finger patterning with an optimal flow rate. The interaction between a non-invasive breast cancer cell line, MCF-7 and stromal fibroblast most likely remain unchanged, thus mimicking the DCIS. This new model system is a potential tool to study DCIS progression and treatment response by offering physiologically relevant features that can be tailored to match disease state and patient specific conditions

    Co-attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

    Full text link
    Graph Neural Networks (GNNs) have proven to be effective in processing and learning from graph-structured data. However, previous works mainly focused on understanding single graph inputs while many real-world applications require pair-wise analysis for graph-structured data (e.g., scene graph matching, code searching, and drug-drug interaction prediction). To this end, recent works have shifted their focus to learning the interaction between pairs of graphs. Despite their improved performance, these works were still limited in that the interactions were considered at the node-level, resulting in high computational costs and suboptimal performance. To address this issue, we propose a novel and efficient graph-level approach for extracting interaction representations using co-attention in graph pooling. Our method, Co-Attention Graph Pooling (CAGPool), exhibits competitive performance relative to existing methods in both classification and regression tasks using real-world datasets, while maintaining lower computational complexity.Comment: Published at IEEE Acces

    Investigation of Advanced Cathode Contacting Solutions in SOFC

    Get PDF
    Contacting solutions for air electrode in Solid Oxide Cells stacks often implement a ceramic paste made of electronic conducting perovskite, comparable or same as the electro-active material. This contacting layer, is applied in a green state by wet-powder-spray or screen-printing, and in situ fired during stack commissioning. The low level of necking between ceramic particles causes increased ohmic losses. Moreover the shrinkage usually observed during long term operation in temperature of this layer, due to sintering effect, lead to cracks and contact losses which hinder the cell performance. Increasing cell’s footprint, performance and lifetime at the stack level requires appropriate contacting solution. In this paper we reports the investigation of a new advanced monolithic contacting solution, easy to handle, soft and flexible, highly porous and highly conductive. Two different compositions have been investigated, with respect of their compatibility with Crofer (SEM, XRD). In addition, solid oxide cells contacted with this solution as well as with a ceramic paste have also been electrochemically tested up to 1000 hours in order to compare and assess the impact of this contacting solution on cell’s performance. Results will be presented and discussed

    Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells

    Get PDF
    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs

    The value(s) of social media rituals: a cross-cultural analysis of New Year’s resolutions

    Get PDF
    © 2021 The Authors. Published by Routledge. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1080/1369118X.2021.1983003New Year’s resolutions are acts of valuation where people express ideas about what is important and worthwhile in life. Although resolutions have a long history, the twenty-first century has transformed the practice into a social media ritual with greater visibility, interactivity, and reach. Using this unique event to explore the globalization of values, we analyze tweets about New Year’s resolutions in English, German, Italian, Japanese, and Korean. Combining network analysis (n = 160,592) and content analysis (n = 2000), we compare discursive topics, modes of ritual participation, and the values expressed in resolutions. Our findings indicate both that the ritual crosses cultures and that there are language-specific dynamics that do not map neatly onto established divisions between ‘Eastern’ and ‘Western’ value orientations. Instead, we identify three underlying tensions organizing the articulation of values: self-acceptance vs. self-improvement, public vs. private, and conformity vs. oppositionality. We discuss these in relation to an overarching tension between local contexts and global platform cultures. Finally, we explore the study’s broader implications for understanding the interaction between values, norms, and global communicative practices.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme [grant agreement No 819004].Published onlin

    Crowdsourced mapping of unexplored target space of kinase inhibitors

    Get PDF
    Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    • 

    corecore