
The Journal of Applied Business Research – May/June 2017 Volume 33, Number 3 

Copyright by author(s); CC-BY 615 The Clute Institute 

Airline Booking Limit Competition 
Game Under Differentiated Fare Structure 

Joonkyum Lee, Sogang University, South Korea 
Bumsoo Kim, Sogang University, South Korea 

 
 

ABSTRACT 
 

We address a two-firm booking limit competition game in the airline industry. We assume aggregate common demand, 
and differentiated ticket fare and capacity, to make this study more realistic. A game theoretic approach is used to 
analyze the competition game. The optimal booking limits and the best response functions are derived. We show the 
existence of a pure Nash equilibrium and provide the closed-form equilibrium solution. The location of the Nash 
equilibrium depends on the relative magnitude of the ratios of the full and discount fares. We also show that the sum 
of the booking limits of the two firms remains the same regardless of the initial allocation proportion of the demand. 
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1. INTRODUCTION 
 

dvances in information technology have enabled people to access integrated airline booking 
information and have sensitized customers to more price-sensitive flight fares. Meanwhile, 
deregulation in the airline industry and the advent of discount airlines have brought about a more 

competitive environment in this industry, leading to its market expansion. Therefore, competition can considerably 
affect a firm’s strategic and operational decision-making process, and airlines should take other players’ actions into 
account.  
 
Airline products tend to be less differentiated among airlines, leading to price competition. However, discount and 
full service airlines continue to co-exist in many markets, and there are differences in price and service among the 
same fare class. In addition, there has been a tendency for airlines to work within a common market given the 
prevalence of web-based travel agencies. While the ticket fare is the most critical factor for customers, some people 
prefer a particular airline owing to its frequent flyer program and service differentiation. Accordingly, a study on 
booking limit with competition under a common market and differentiated fare structure from the revenue 
management perspective could have substantial impact on both the academia and the industry.  
 
Airline revenue management, sometimes called airline yield management, covers revenue factors (e.g., fare value 
structure), control system (e.g., booking limits and overbooking), and demand forecasting (e.g., cancellations) among 
others (McGill, & Van Ryzin, 1999). We focus on the booking limit control system under competition in this study. 
 
The booking limit decision is among the most significant issues in revenue management, and much research has been 
conducted on those issues. These aspects concern approving or denying a request for a certain fare class. The airline 
problem comprises multiple fare classes, causing demand and excess demand for each class, thus resulting in 
differentiated fare among players. A two-stage booking limit decision would be appropriate in such an environment. 
That is, players set the fares in the first stage, and then they observe the whole price information and set the booking 
limit in the second stage. This could be a good approximation of the current situation, where airlines publicize the fare 
information and then control their booking limit according to the market situation.   
 
Even though the booking limit decision is the most important aspect in revenue management and competition is fierce, 
not much study has been devoted to booking limit policies considering competition. Netessine and Shumsky (2005) 
investigated horizontal and vertical competition for two airlines. They used firm-specific demand and the deterministic 
fraction of excess demand overflow to the other firm. They proved the existence of the Nash equilibrium, and the 
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results indicated that more seats are protected for the full fare class. Song and Parlar (2012) studied a similar problem 
but they considered the penalty cost of rejected transfer reservations. They showed the uniqueness of the Nash 
equilibrium.  
 
Li, Oum, and Anderson (2007) investigated two airlines with regard to competitive seat allocation for two fare classes. 
They used common market demand for players, and considered the initial allocation rule to be the proportional 
rationing rule. Demands for each fare class were not independent, but the fare structures were identical. They proved 
the existence of equilibrium with the same booking policy for full fare. Li, Zhang, and Zhang (2008) extended a 
previous study (Li et al. 2007), which was based on cost asymmetry. Li et al. (2016) studied a duopoly game in revenue 
management with callable products. They showed that offering callable products can increase the booking limits but 
it might be detrimental to business.  
 
Analogous problems of competition with inventories have been studied actively under the newsvendor setting. Parlar 
(1988) extended the classic newsvendor problem to the two-firm competitive newsvendor problem, in which the firms 
face independent random demands. Wang and Parlar (1994) examined three-player newsvendor competition and 
cooperation. Lippman and McCardle (1997) provided a generalized n-firm case analysis of the competitive 
newsvendor problem. They used the common market and examined four splitting rules. Netessine and Rudi (2003) 
carried out research on the competitive newsvendor problem for general n-firm cases. They used firm-specific demand, 
and the excess demand was reallocated with the deterministic fraction. Some of these studies proved the existence of 
the Nash equilibrium while others were implicit. The competitive newsvendor problem, however, differs from the 
booking limit problem because the airline problem has multiple fare classes and airplanes have limited capacity. 
Therefore, the results of the competitive newsvendor studies cannot be directly applied in the revenue management 
setting. 
 
In analyzing booking limit competition, establishing the existence of a pure Nash equilibrium is important because it 
is operationally difficult to implement mixed strategies (Li, Oum, and Anderson, 2007). Lippman and McCardle 
(1997) use supermodularity to establish the existence of pure Nash equilibrium, and Netessine and Shumsky (2005) 
show the existence of a pure Nash equilibrium under mild assumptions. In this study, we show the existence of a pure 
Nash equilibrium by analyzing the response functions. 
 
The above literature, however, did not consider the situation of the booking limit competition under aggregate common 
demand, distinct fare structure, and different capacity. Assuming a common market for airlines is more appropriate at 
this time given the prevalence of web-based travel agencies. The assumptions of distinct fare structures and different 
capacities (rather than identical ones) are also more realistic. Therefore, this study assumes aggregate demand, distinct 
fare structure, and different capacity. In doing so, it reflects a more realistic situation compared to existing studies that 
have considered competition.  
 
In this study, we analyze the competitive booking limit decision under a common market and assuming distinct fare 
structures among airlines. Price and service differentiation and customer preference are reflected by the consumer 
choice model, such as the logit model, which determines the initial allocation and re-allocation of common demand. 
The optimal booking limit with competition is investigated and the existence of the Nash equilibrium based on the 
response functions is analyzed. To accomplish this, we use the game theoretic method to find equilibrium in 
competitive cases. This study provides a tractable and explicit solution, which can be extended to more complicated 
analyses. Most of the existing papers dealt with implicit solutions, but these cannot provide an intuitive answer for 
practical situations. We also discuss the characteristics of the equilibrium based on the closed-form solutions.  
 

2. MODEL 
 

2.1 Setting and Notation 
 
We analyze the single-period single-leg airline market. The two airlines are indexed by A and B and provide flights 
for the same market. There are two fare classes, discount fare (d) and full fare (f), for each airline, denoted by 𝑑" and 
𝑑#, and 𝑓" and 𝑓# respectively. Capacities are denoted by 𝐶" and 𝐶#. The demand for full fare is a random variable, 
X, and the demand for discount fare is large enough to fill the whole capacities. The probability distribution and 
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cumulative distribution of demand are denoted by 𝑔 and 𝐺 respectively. The decision variables for airlines A and B 
are the protection levels for the full fare class, denoted by yA, and yB respectively. The objective of each airline is to 
set a number of seats for the full fare class so as to maximize the expected revenue, taking the other player’s decision 
into account.  
 
McGill and Van Ryzin’s (1999) six common assumptions of seat inventory control are also applied to this model: 1) 
sequential booking classes, 2) low-before-high fare booking arrival pattern, 3) statistical independence of demand 
between booking classes, 4) no cancellation or no-shows (no overbooking), 5) single-flight leg with no network effect, 
6) no batch booking. These assumptions are considerably common in the revenue management literature, and we also 
adopt them for the purpose of tractability of complex problems. The model in this study assumes a two-stage game, 
which means the fares will be determined at the first stage, and the airline will decide the booking limit after observing 
the other players’ fare decision.  
 
2.2 Demand Allocation 
 
As described above, we assume a common market for all players, which is more realistic and simple. Total demand is 
a random variable denoted by X and follows an arbitrary distribution. For initial allocation, the fixed demand fraction 
coefficient for airline A and B is 𝛼 and (1 − 𝛼) respectively. Therefore, the initial demand for airline A is 𝛼X, and that 
for airline B is (1 − 𝛼)X. In this case, the demand for both airlines is perfectly correlated.  
 
Excess demand, namely demand that cannot be satisfied by initial allocation, is reallocated to the other airline. This 
means that the customer who cannot buy a ticket of his or her favorite airline will search for another airline as a 
substitute. We assume that all the excess demand overflows to the other airline.  
 
We also assume the existence of price and other differentiation features, including frequent flight programs and service 
quality. These factors as well as the ticket fare will affect the demand allocation proportion, 𝛼. The value of 𝛼 can be 
determined according to commonly used choice models such as the logit model. If the logit model is used to capture 
the customer choice decision, 𝛼 is determined as follows. 
 

𝛼 =
𝐾"exp	(−𝑓"/𝜇)

1 + 𝐾"exp	(−𝑓"/𝜇) + 𝐾#exp	(−𝑓#/𝜇)
,						𝜇 ≥ 0 

 
The attractiveness of product features, including frequent flight programs and service quality, are captured by 𝐾" and 
𝐾#. 𝜇 is a scaling factor. The value 1 in the denominator denotes external alternatives (e.g., train or bus), which means 
that the size of the whole market could be affected by the fares, and if the airline fare is too high, then people will 
choose other options. Therefore, the decision on the ticket fares can change the size of the market. In this study, the 
fares are presumed to be predetermined.  
 

3. ANALYSIS AND RESULTS 
 
3.1. Revenue Function 
 
The total revenue for airline A comprises revenues from the full fare class and the discount fare class.  
 

Π" = 𝑓" min[𝛼𝑋 + 1 − 𝛼 𝑋 − 𝑦# A, 𝑦"] + 𝑑"(𝐶" − 𝑦") 
 
Let 𝑅" = 𝛼𝑋 + 1 − 𝛼 𝑋 − 𝑦# A, and 𝑇" = min[𝛼𝑋 + 1 − 𝛼 𝑋 − 𝑦# A, 𝑦"]. The effective demand for airline A, 
represented by RA, is the sum of the initial demand for airline A itself and the overflow from the excess demand from 
airline B. If airline B’s protection level for the full fare is less than the initial demand for airline B, there will be positive 
overflow demand from B to A, and all the excess customers will try to buy tickets from airline A. Note that the effective 
demand for A depends on the other player’s decision variable. TA is the actual number of full fare customers of airline 
A, which is the minimum of the effective demand and protection levels. The rest of the capacity will be filled by 
discount fare customers.  
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The value of RA varies according to the critical value of 𝑦#/ 1 − 𝛼 : if 𝑥 > 𝑦#/ 1 − 𝛼 , then 𝑅" = 𝑥 − 𝑦#; if	𝑥 ≤
𝑦#/ 1 − 𝛼 , then 𝑅" = 𝛼𝑥. Similarly, the value of TA is dependent on the critical values of 𝑦" + 𝑦#, and 𝑦"/𝛼. 
 
It can be shown that the realized values of RA and TA vary depending on the critical values of 𝑦#/ 1 − 𝛼 , 𝑦" + 𝑦#	, 
and 𝑦"/𝛼. The critical values identify the critical point where demand X reaches protection levels. To be specific, the 
demand reaches airline A’s protection level at 𝑦"/𝛼, airline B’s protection level at 𝑦H/ 1 − 𝛼 , and sum of the both 
protection levels at 𝑦" + 𝑦#. After the demand exceeds 𝑦" + 𝑦#, both airlines’ full fare classes will be fully filled. 
Depending on the value of α, and the critical values, RA and TA are determined as follows. 
 
 
Case 1: If α ≥ 𝑦"/(𝑦" + 𝑦#), then 𝑦"/α ≤ 𝑦" + 𝑦# ≤ 𝑦#/(1 − α) 

 𝑦"/α 𝑦" + 𝑦# 𝑦#/(1 − α) 
𝑋   

𝑅" 𝛼𝑥  𝑥 − 𝑦# 
𝑇" 𝛼𝑥  𝑦" 

 
 
Case 2: If α < 𝑦"/(𝑦" + 𝑦#), then 𝑦#/(1 − α) ≤ 𝑦" + 𝑦# ≤ 𝑦"/α 

 𝑦#/(1 − α)	 𝑦" + 𝑦#	 𝑦"/α 
𝑋  

𝑅" 𝛼𝑥  𝑥 − 𝑦# 
𝑇" 𝛼𝑥  𝑥 − 𝑦# 𝑦" 

 
 
3.2. Maximizing Expected Revenue  
 
To find the optimal protection level that maximizes the expected revenue, we find the first-order condition using 
Leibniz’s rule.  
 

𝐸 Π" = 𝑓" min 𝛼𝑥 + 1 − 𝛼 𝑥 − 𝑦# A, 𝑦" + 𝑑" 𝐶" − 𝑦" = 𝑓"𝐸[𝑇"] + 𝑑" 𝐶" − 𝑦"  
 
Therefore, ∂𝐸 Π" / ∂𝑦" = 𝑓" ∂𝐸 𝑇" / ∂𝑦" − 𝑑". 
 

For Case 1, 𝐸 𝑇" = 𝛼𝑥𝑔 𝑥 𝑑𝑥MN/O
P + 𝑦"𝑔 𝑥 𝑑𝑥Q

MN/O . 
 

∂𝐸 𝑇"

∂𝑦"
= 𝛼

𝑦"

𝛼
1
𝛼
𝑔

𝑦"

α
− 𝑦"𝑔

𝑦"

α
1
𝛼
+ 𝑔 𝑥 𝑑𝑥

Q

MN/O
= 𝑔 𝑥 𝑑𝑥

Q

MN/O
= 1 − 𝐺(𝑦"/α) 

 
Thus, ∂𝐸 Π" / ∂𝑦" = 𝑓"(1 − 𝐺(𝑦"/α)) − 𝑑". The first-order condition is 𝐺(𝑦"/α) = 1 − 𝑑"/𝑓". Hence, the 
optimal protection level of airline A is 𝑦" = 	α𝐺RS(1 − 𝑑"/𝑓"). Note that 1 − 𝑑"/𝑓" > 0 by assumption. We 
assume that the demand function is monotonically increasing so that the second-order condition is satisfied.  
 

For Case 2, 𝐸 𝑇" = 𝛼𝑥𝑔 𝑥 𝑑𝑥MT/(SRO)
P + (𝑥 − 𝑦#)𝑔 𝑥 𝑑𝑥MNAMT

MT/(SRO) + 𝑦"𝑔 𝑥 𝑑𝑥Q
MNAMT . 

 
∂𝐸 𝑇"

∂𝑦"
= 𝑔 𝑥 𝑑𝑥

Q

MNAMT
= 1 − 𝐺(𝑦" + 𝑦#) 

 
Thus, ∂𝐸 Π" / ∂𝑦" = 𝑓"(1 − 𝐺(𝑦" + 𝑦#)) − 𝑑". The first-order condition is 𝐺(𝑦" + 𝑦#) = 1 − 𝑑"/𝑓". Hence, 
the optimal protection level of airline A is 𝑦" = 	𝐺RS(1 − 𝑑"/𝑓") − 𝑦#.  
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We can find the optional protection level of airline B in a similar way. The optimal protection levels are summarized 
in Table 1. 
 
 

Table 1. The optimal protection level for each airline 
 If 𝛂 ≥ 𝒚𝑨/(𝒚𝑨 + 𝒚𝑩) If 𝛂 < 𝒚𝑨/(𝒚𝑨 + 𝒚𝑩) 

Optimal protection level of A 𝑦" = 	α𝐺RS(1 − 𝑑"/𝑓") 𝑦" = 	𝐺RS(1 − 𝑑"/𝑓") − 𝑦# 
Optimal protection level of B 𝑦# = 	𝐺RS(1 − 𝑑#/𝑓#) − 𝑦" 𝑦# = (1 − α)𝐺RS(1 − 𝑑#/𝑓#) 

 
 
3.3. Best Response Function and Nash Equilibrium 
 
The above optimal protection levels are the best response of each firm to the other firm’s action. Furthermore, if their 
beliefs of other firms’ action correspond to their actual action, the pair of their protection levels should be a pure Nash 
equilibrium. Figure 1 illustrates the best responding functions.  
 
The Nash equilibrium is the intersection of these two best response functions. Table 2 shows a Nash equilibrium 
denoted by 𝑦" and 𝑦#for airlines A and B respectively. 
 
 

Table 2. The Nash equilibrium solution 
 If 𝒅

𝑨

𝒇𝑨
< 𝒅𝑩

𝒇𝑩
 If 𝒅

𝑨

𝒇𝑨
≥ 𝒅𝑩

𝒇𝑩
 

Nash equilibrium 𝑦" 𝛼𝐺RS 1 − [N

\N
  𝐺RS 1 − [N

\N
− 1 − α 𝐺RS 1 − [T

\T
  

Nash equilibrium 𝑦# 𝐺RS 1 − [T

\T
− α𝐺RS 1 − [N

\N
  1 − α 𝐺RS 1 − [T

\T
  

 
 
The best response function of each airline is piece-wise linear. For example, the best response of B is to decrease the 
booking limit up to the threshold and to maintain it after the threshold as A increases the booking limit. As A increases 
the booking limit, the probability that B has some overflow demand decreases. Therefore, B has to decrease the 
booking limit. However, after the threshold, the expected revenue from the overflow full fare customers exceeds the 
expected revenue from the discount fare, and therefore, it has to maintain the booking limit. 
 
There exists a pure Nash equilibrium booking limit solution. The location of the solution depends on the relative 
magnitude of the ratios of the discount and the full fare. If the ratios are the same, then 𝑦" = 𝛼𝐺RS 1 − 𝑑/𝑓  and 
𝑦# = (1 − 𝛼)𝐺RS 1 − 𝑑/𝑓 , which means that both airlines’ booking limits are proportional to their own demand. 
However, if the ratio of airline A is smaller, or the full fare of A is relatively expensive, then the optimal booking limit 
of airline B will increase at the equilibrium. 
 
Note that 𝑦" + 𝑦# = max{𝐺RS 1 − 𝑑"/𝑓" , 𝐺RS 1 − 𝑑#/𝑓# }, and it does not depend on the value of α. That is, the 
total booking limit is independent of the proportions of the demand for A and B. Therefore, regardless of the initial 
demand allocation, airline A will reduce the booking limit if B increases the booking limit, and the magnitude of the 
increase and the decrease will be the same. 
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Figure 1. The best response functions of each airline and the Nash equilibrium 

 
 
 

4. CONCLUSION 
 
Nowadays, the airline industry faces a competitive environment. The prevalence of web-based agencies has resulted 
in a common market for customers. Companies in the same sector compete with each other with regard to ticket fares 
and booking limits. The excess demand from a firm will overflow to the other firm. Nevertheless, there is a lack of 
studies on the competitive booking limit game. Unlike the existing literature, we consider a more realistic situation: 
aggregate common demand, and distinct fare structure as well capacity for each airline. We use a game theoretic 
approach to analyze a two-firm booking limit competition game. We find the optimal booking limit and the best 
response function for each firm. We show that there exists a pure Nash equilibrium, which depends on the relative 
magnitude of the ratios of the full and discount fares. We also show that the sum of the booking limits of the two firms 
remains the same regardless of the initial allocation proportion of the demand.  
 
This paper provides tractable and closed-form solutions of the pure Nash equilibrium, which can be extended to more 
complicated analyses. We only consider two-firm competition but competition among an arbitrary number of firms 
could give more general insights. We fix the full and discount fares in this study but analyzing simultaneous decisions 
about fares and booking limits would be of interest to researchers and practitioners. Finally, we do not consider 
dynamic pricing and the booking limit decision. Studies on those topics will provide more realistic lessons.  
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