357 research outputs found

    Lake Mahega: a mesothermic, sulphato-chloride lake in western Uganda

    Get PDF
    In May, 1971, Lake Mahega had pronounced mesothermy (40.W C at one metre). Solar heating of a bloom of baeteria and the blue-green alga, Synechococcus bacillaris Butch., probably caused the high temperature. A total ionic concentration gradient increasing from 192,600 mg 1itre-1 at the surface to 415,200 mg•litre- 1 at three metres stabilized the thermally inverted water. Nearly equal amounts of chloride and sulphate accounted for about 90% of the anionic composition. Sodium was the major cation. Crystals or the triple salt, northupite (Na2 CO3. MgCO3. NaCl) and of thenardite (Na2SO4) were mixed with the surface sediment. We believe it is possible that primary northupite depnsition is occurring. Lake Mahega is also the first mesothermic, sulphato-chloride lake reported for East Africa

    Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109760/1/lno1988334part20796.pd

    Phytoplankton competition along a gradient of dilution rates

    Get PDF
    Natural phytoplankton from Lake Constance was used for chemostat competition experiments performed at a variety of dilution rates. In the first series at high Si:P ratios and under uniform phosphorus limitation for all species, Synedra acus outcompeted all other species at all dilution rates up to 1.6 d-1, only at the highest dilution rate (2.0 d-1) Achnanthes minutissima was successful. In the second series in the absence of any Si a green algal replacement series was found, with Mougeotia thylespora dominant at the lowest dilution rates, Scenedesmus acutus at the intermediate ones, and Chlorella minutissima at the highest ones. The outcome of interspecific competition was not in contradiction with the Monod kinetics of P-limited growth of the five species, but no satisfactorily precise prediction of competitive performance can be derived from the Monod kinetics because of insufficient precision in the estimate of k s

    The evolution of saline lake waters: gradual and rapid biogeochemical pathways in the Basotu Lake District, Tanzania

    Full text link
    The biogeochemical evolution of solutes markedly alters the chemistry in the closed-basin maar lakes that comprise the Basotu Lake District (Tanzania, East Africa). Examination of 11 (out of 13) lakes in the Basotu Lake District identified two distinct evolutionary pathways: a gradual path and a rapid path. During the course of biogeochemical evolution these waters follow either the gradual path alone or a combination of the gradual and rapid paths. Solute evolution along the gradual path is determined by all of the biogeochemical processes that for these waters appear to be tightly coupled to evaporative concentration (e.g. mineral precipitation, sorption and ion exchange, C0 2 degassing, and sulfate reduction). Rapid evolution occurs when mixing events suddenly permit H 2 S to be lost to the atmosphere. The chemistry of waters undergoing rapid evolution is changed abruptly because loss of every equivalent of sulfide produces an equivalent permanent alkalinity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42881/1/10750_2004_Article_BF00026937.pd

    Nitrate- and silicate-competition among antarctic phytoplankton

    Get PDF
    Natural phytoplankton from antarctic waters in the Drake Passage were used for competition experiments in semicontinuous cultures. The outcome of interspecific competition for silicate and nitrate was studied at a range of Si:N ratios (from 2.6:1 to 425:1) and at three different dilution rates. For five species Monod kinetics of silicate-and nitrate-limited growth has been established. Comparison between theoretical predictions derived from Monod kinetics and the outcome of competition experiments showed only minor deviations. Contrary to literature data, considerable depletion of nitrate was found in antarctic seawater. Both the concentrations of soluble silicate and of nitrate were too low to support maximum growth rates of some of the diatom species under investigation

    Australian Aboriginal Ethnometeorology and Seasonal Calendars

    Get PDF
    This paper uses a cultural anthropological approach to investigate an indigenous Australian perspective on atmospheric phenomena and seasons, using data gained from historical records and ethnographic fieldwork. Aboriginal people believe that the forces driving the weather are derived from Creation Ancestors and spirits, asserting that short term changes are produced through ritual. By recognizing signals such as wind direction, rainfall, temperature change, celestial movements, animal behaviour and the flowering of plants, Aboriginal people are able to divide the year into seasons. Indigenous calendars vary widely across Australia and reflect annual changes within Aboriginal lifestyles

    Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake

    Full text link
    Phytoplankton abundance in tropical lakes is more often judged to be limited by nitrogen than phosphorus, but seldom does the evidence include controlled enrichments of natural populations. In January 1980 we performed the first experimental fertilization in an equatorial African soda lake, Lake Sonachi, a small, meromictic volcanic crater lake in Kenya. During our study the natural phytoplankton abundance was ca. 80 μg chl a /l, and the euphotic zone PO 4 and NH 4 concentrations were less than 0.5 μM. In the monimolimnion PO 4 reached 180 μM and NH 4 reached 4,600 μM. Replicate polyethylene cylinders (5 m long, 1.2 m 3 ) were enriched to attain 10 μM PO 4 and 100 μM NH 4 . Phytoplankton responses were measured as chlorophyll, cell counts and particulate N, P and C. After two days, the chlorophyll increase in the P treatment was significantly higher than the control ( P <0.01) while the N treatment was not. After five days the molar N/P ratio of seston was the same in the N treatment and control (23) but only 6 in the P treatment. The molar N/P ratio of seston in an unenriched Lake Sonachi sample was 21 and in samples from Lakes Bogoria and Elmenteita, two shallow soda lakes in Kenya, the ratios were 12 and 70 respectively. We conclude that limitation of phytoplankton abundance by phosphorus can occur even in some tropical African soda lakes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47742/1/442_2004_Article_BF00367954.pd

    Diapause as escape strategy to exposure to toxicants: response of Brachionus calyciforus to arsenic

    Get PDF
    Invertebrate organisms commonly respond to environmental fluctuation by entering diapause. Production of diapause in monogonont rotifers involves a previous switch from asexual to partial sexual reproduction. Although zooplankton have been used in ecotoxicological assays, often their true vulnerability to toxicants is underestimated by not incorporating the sexual phase. We experimentally analyzed traits involved in sexual reproduction and diapause in the cyclically parthenogenetic freshwater rotifer, Brachionus calyciflorus, exposed to arsenic, a metalloid naturally found in high concentrations in desert zones, focusing on the effectiveness of diapause as an escape response in the face of an adverse condition. Addition of sublethal concentrations of arsenic modified the pattern of diapause observed in the rotifer: investment in diapause with arsenic addition peaked earlier and higher than in non-toxicant conditions, which suggests that sexual investment could be enhanced in highly stressed environmental conditions by increased responsiveness to stimulation. Nevertheless, eggs produced in large amount with arsenic, were mostly low quality, and healthy-looking eggs had lower hatching success, therefore it is unclear whether this pattern is optimum in an environment with arsenic, or if rather arsenic presence in water bodies disturbs the optimal allocation of offspring entering diapause. We observed high accumulation of arsenic in organisms exposed to constant concentration after several generations, which suggests that arsenic may be accumulated transgenerationally. The sexual phase in rotifers may be more sensitive to environmental conditions than the asexual one, therefore diapause attributes should be considered in ecotoxicological assessment because of its ecological and evolutionary implications on lakes biodiversity

    Stable Isotope Evidence for Dietary Overlap between Alien and Native Gastropods in Coastal Lakes of Northern KwaZulu-Natal, South Africa

    Get PDF
    Tarebia granifera (Lamarck, 1822) is originally from South-East Asia, but has been introduced and become invasive in many tropical and subtropical parts of the world. In South Africa, T. granifera is rapidly invading an increasing number of coastal lakes and estuaries, often reaching very high population densities and dominating shallow water benthic invertebrate assemblages. An assessment of the feeding dynamics of T. granifera has raised questions about potential ecological impacts, specifically in terms of its dietary overlap with native gastropods.A stable isotope mixing model was used together with gut content analysis to estimate the diet of T. granifera and native gastropod populations in three different coastal lakes. Population density, available biomass of food and salinity were measured along transects placed over T. granifera patches. An index of isotopic (stable isotopes) dietary overlap (IDO, %) aided in interpreting interactions between gastropods. The diet of T. granifera was variable, including contributions from microphytobenthos, filamentous algae (Cladophora sp.), detritus and sedimentary organic matter. IDO was significant (>60%) between T. granifera and each of the following gastropods: Haminoea natalensis (Krauss, 1848), Bulinus natalensis (Küster, 1841) and Melanoides tuberculata (Müller, 1774). However, food did not appear to be limiting. Salinity influenced gastropod spatial overlap. Tarebia granifera may only displace native gastropods, such as Assiminea cf. ovata (Krauss, 1848), under salinity conditions below 20. Ecosystem-level impacts are also discussed.The generalist diet of T. granifera may certainly contribute to its successful establishment. However, although competition for resources may take place under certain salinity conditions and if food is limiting, there appear to be other mechanisms at work, through which T. granifera displaces native gastropods. Complementary stable isotope and gut content analysis can provide helpful ecological insights, contributing to monitoring efforts and guiding further invasive species research
    • …
    corecore