122 research outputs found
A Pilot Experiment with Reactor Neutrinos in Taiwan
A Collaboration comprising Taiwan and mainland Chinese scientists has been
built up since 1996 to pursue a experimental program in neutrino and
astro-particle physics in Taiwan. A pilot experiment to be performed at the
Nuclear Power Station II in Taiwan is now under intense preparation. It will
make use of a 600 kg CsI(Tl) crystal calorimeter to study various neutrino
interactions. The feasibility of performing a long baseline reactor neutrino
experiment will also be investigated. The conceptual design and the physics to
be addressed by the pilot experiment are presented.Comment: 14 pages, 8 figures, 2 table
Scaling Analysis of Fluctuating Strength Function
We propose a new method to analyze fluctuations in the strength function
phenomena in highly excited nuclei. Extending the method of multifractal
analysis to the cases where the strength fluctuations do not obey power scaling
laws, we introduce a new measure of fluctuation, called the local scaling
dimension, which characterizes scaling behavior of the strength fluctuation as
a function of energy bin width subdividing the strength function. We discuss
properties of the new measure by applying it to a model system which simulates
the doorway damping mechanism of giant resonances. It is found that the local
scaling dimension characterizes well fluctuations and their energy scales of
fine structures in the strength function associated with the damped collective
motions.Comment: 22 pages with 9 figures; submitted to Phys. Rev.
Dielectronic Recombination of Ground-State and Metastable Li+ Ions
Dielectronic recombination has been investigated for Delta-n = 1 resonances
of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s
^3S). The ground-state spectrum shows three prominent transitions between 53
and 64 eV, while the metastable spectrum exhibits many transitions with
energies < 3.2 eV. Reasonably good agreement of R-matrix, LS coupling
calculations with the measured recombination rate coefficient is obtained. The
time dependence of the recombination rate yields a radiative lifetime of 52.2
+- 5.0 s for the 2 ^3S level of Li+.Comment: Submitted to Phys. Rev. A; REVTeX, 4 pages, 3 figure
Electron recombination with multicharged ions via chaotic many-electron states
We show that a dense spectrum of chaotic multiply-excited eigenstates can
play a major role in collision processes involving many-electron multicharged
ions. A statistical theory based on chaotic properties of the eigenstates
enables one to obtain relevant energy-averaged cross sections in terms of sums
over single-electron orbitals. Our calculation of the low-energy electron
recombination of Au shows that the resonant process is 200 times more
intense than direct radiative recombination, which explains the recent
experimental results of Hoffknecht {\em et al.} [J. Phys. B {\bf 31}, 2415
(1998)].Comment: 9 pages, including 1 figure, REVTe
Multiscale fluctuations in nuclear response
The nuclear collective response is investigated in the framework of a doorway
picture in which the spreading width of the collective motion is described as a
coupling to more and more complex configurations. It is shown that this
coupling induces fluctuations of the observed strength. In the case of a
hierarchy of overlapping decay channels, we observe Ericson fluctuations at
different scales. Methods for extracting these scales and the related lifetimes
are discussed. Finally, we show that the coupling of different states at one
level of complexity to some common decay channels at the next level, may
produce interference-like patterns in the nuclear response. This quantum effect
leads to a new type of fluctuations with a typical width related to the level
spacing.Comment: 34 Latex pages including 6 figures (submitted to Phys. Rev. C
Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory
Absolute total electron-ion recombination rate coefficients of argonlike
Sc3+(3s2 3p6) ions have been measured for relative energies between electrons
and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic
recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad
resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F
intermediate state is found at 12.31 +- 0.03 eV with a small experimental
evidence for an asymmetric line shape. From R-Matrix and perturbative
calculations we infer that the asymmetric line shape may not only be due to
quantum mechanical interference between direct and resonant recombination
channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but
may partly also be due to the interaction with an adjacent overlapping DR
resonance of the same symmetry. The overall agreement between theory and
experiment is poor. Differences between our experimental and our theoretical
resonance positions are as large as 1.4 eV. This illustrates the difficulty to
accurately describe the structure of an atomic system with an open 3d-shell
with state-of-the-art theoretical methods. Furthermore, we find that a
relativistic theoretical treatment of the system under study is mandatory since
the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D
resonances can only be explained when calculations beyond LS-coupling are
carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also:
http://www.strz.uni-giessen.de/~k
T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs
The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. © 2013 de Melo et al
Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction
Intra-operative imaging techniques for obtaining the shape and morphology of soft-tissue surfaces in vivo are a key enabling technology for advanced surgical systems. Different optical techniques for 3-D surface reconstruction in laparoscopy have been proposed, however, so far no quantitative and comparative validation has been performed. Furthermore, robustness of the methods to clinically important factors like smoke or bleeding has not yet been assessed. To address these issues, we have formed a joint international initiative with the aim of validating different state-of-the-art passive and active reconstruction methods in a comparative manner. In this comprehensive in vitro study, we investigated reconstruction accuracy using different organs with various shape and texture and also tested reconstruction robustness with respect to a number of factors like the pose of the endoscope as well as the amount of blood or smoke present in the scene. The study suggests complementary advantages of the different techniques with respect to accuracy, robustness, point density, hardware complexity and computation time. While reconstruction accuracy under ideal conditions was generally high, robustness is a remaining issue to be addressed. Future work should include sensor fusion and in vivo validation studies in a specific clinical context. To trigger further research in surface reconstruction, stereoscopic data of the study will be made publically available at www.open-CAS.com upon publication of the paper
Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems
The phenomenon of super-radiance (Dicke effect, coherent spontaneous
radiation by a gas of atoms coupled through the common radiation field) is well
known in quantum optics. The review discusses similar physics that emerges in
open and marginally stable quantum many-body systems. In the presence of open
decay channels, the intrinsic states are coupled through the continuum. At
sufficiently strong continuum coupling, the spectrum of resonances undergoes
the restructuring with segregation of very broad super-radiant states and
trapping of remaining long-lived compound states. The appropriate formalism
describing this phenomenon is based on the Feshbach projection method and
effective non-Hermitian Hamiltonian. A broader generalization is related to the
idea of doorway states connecting quantum states of different structure. The
method is explained in detail and the examples of applications are given to
nuclear, atomic and particle physics. The interrelation of the collective
dynamics through continuum and possible intrinsic many-body chaos is studied,
including universal mesoscopic conductance fluctuations. The theory serves as a
natural framework for general description of a quantum signal transmission
through an open mesoscopic system.Comment: 85 pages, 10 figure
- …