31 research outputs found

    A Paracoccidioides brasiliensis glycan shares serologic and functional properties with cryptococcal glucuronoxylomannan

    Get PDF
    The cell wall of the yeast form of the dimorphic fungus Paracoccidioides brasiliensis is enriched with alpha 1,3-glucans. in Cryptococcus neoformans, alpha 1,3-glucans interact with glucuronoxylomannan (GXM), a hetero-polysaccharide that is essential for fungal virulence. in this study, we investigated the occurrence of P. brasiliensis glycans sharing properties with cryptococcal GXM. Protein database searches in P. brasiliensis revealed the presence of sequences homologous to those coding for enzymes involved in the synthesis of GXM and capsular architecture in C. neoformans. in addition, monoclonal antibodies (mAbs) raised to cryptococcal GXM bound to P. brasiliensis cells. Using protocols that were previously established for extraction and analysis of C neoformans GXM, we recovered a P. brasiliensis glycan fraction composed of mannose and galactose, in addition to small amounts of glucose, xylose and rhamnose. in comparison with the C. neoformans GXM, the P. brasiliensis glycan fraction components had smaller molecular dimensions. the P. brasiliensis components, nevertheless, reacted with different GXM-binding mAbs. Extracellular vesicle fractions of P. brasiliensis also reacted with a GXM-binding mAb, suggesting that the polysaccharide-like molecule is exported to the extracellular space in secretory vesicles. An acapsular mutant of C. neoformans incorporated molecules from the P. brasiliensis extract onto the cell wall, resulting in the formation of surface networks that resembled the cryptococcal capsule. Coating the C. neoformans acapsular mutant with the P. brasiliensis glycan fraction resulted in protection against phagocytosis by murine macrophages. These results suggest that P. brasiliensis and C. neoformans share metabolic pathways required for the synthesis of similar polysaccharides and that P. brasiliensis yeast cell walls have molecules that mimic certain aspects of C. neoformans GXM. These findings are important because they provide additional evidence for the sharing of antigenically similar components across phylogenetically distant fungal species. Since GXM has been shown to be important for the pathogenesis of C neoformans and to elicit protective antibodies, the finding of similar molecules in P. brasiliensis raises the possibility that these glycans play similar functions in paracoccidiomycosis. (C) 2012 Elsevier Inc. All rights reserved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)NIHCenter for AIDS Research at EinsteinInterhemispheric Research Training Grant in Infectious Diseases, Fogarty International CenterDepartment of EnergyFiocruz MS, CDTS, BR-21040360 Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Microbiol Prof Paulo de Goes, BR-21941902 Rio de Janeiro, BrazilAlbert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10461 USAUniversidade Federal de São Paulo, Disciplina Biol Celular, BR-04023062 São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, Lab Ultraestrutura Celular Hertha Meyer, BR-21941903 Rio de Janeiro, BrazilAlbert Einstein Coll Med, Div Infect Dis, Dept Med, Bronx, NY 10461 USAUniversidade Federal de São Paulo, Disciplina Biol Celular, BR-04023062 São Paulo, BrazilNIH: AI033142NIH: AI033774NIH: AI052733NIH: HL059842Interhemispheric Research Training Grant in Infectious Diseases, Fogarty International Center: NIH D43-TW007129Department of Energy: DE-FG-9-93ER-20097Web of Scienc

    Enteric Pathogens in Stored Drinking Water and on Caregiver's Hands in Tanzanian Households with and without Reported Cases of Child Diarrhea.

    Get PDF
    Diarrhea is one of the leading causes of mortality in young children. Diarrheal pathogens are transmitted via the fecal-oral route, and for children the majority of this transmission is thought to occur within the home. However, very few studies have documented enteric pathogens within households of low-income countries. The presence of molecular markers for three enteric viruses (enterovirus, adenovirus, and rotavirus), seven Escherichia coli virulence genes (ECVG), and human-specific Bacteroidales was assessed in hand rinses and household stored drinking water in Bagamoyo, Tanzania. Using a matched case-control study design, we examined the relationship between contamination of hands and water with these markers and child diarrhea. We found that the presence of ECVG in household stored water was associated with a significant decrease in the odds of a child within the home having diarrhea (OR = 0.51; 95% confidence interval 0.27-0.93). We also evaluated water management and hygiene behaviors. Recent hand contact with water or food was positively associated with detection of enteric pathogen markers on hands, as was relatively lower volumes of water reportedly used for daily hand washing. Enteropathogen markers in stored drinking water were more likely found among households in which the markers were also detected on hands, as well as in households with unimproved water supply and sanitation infrastructure. The prevalence of enteric pathogen genes and the human-specific Bacteroidales fecal marker in stored water and on hands suggests extensive environmental contamination within homes both with and without reported child diarrhea. Better stored water quality among households with diarrhea indicates caregivers with sick children may be more likely to ensure safe drinking water in the home. Interventions to increase the quantity of water available for hand washing, and to improve food hygiene, may reduce exposure to enteric pathogens in the domestic environment

    Spatial and hydrologic variation of Bacteroidales, adenovirus and enterovirus in a semi-arid, wastewater effluent-impacted watershed

    Get PDF
    Bacteroidales and viruses were contemporaneously measured during dry and wet weather conditions at a watershed-scale in a semi-arid watershed impacted by a mixture of agricultural runoff, municipal wastewater effluent and municipal runoff. The results highlight the presence of municipal wastewater effluent as a confounding factor for microbial source tracking (MST) studies, and thus data were segregated into groups based on whether they were impacted by wastewater effluent. In semi-arid environments such as the Calleguas Creek watershed, located in southern California, the relative contribution of municipal wastewater effluent is dependent on hydrology as storm events lead to conditions where agricultural and municipal stormwater dominate receiving waters (rather than municipal wastewater, which is the case during dry weather). As such, the approach to data segregation was dependent on hydrology/storm conditions. Storm events led to significant increases in ruminant- and dog-associated Bacteroidales concentrations, indicating that overland transport connects strong non-human fecal sources with surface waters. Because the dataset had a large number of non-detect samples, data handling included the Kaplan–Meir estimator and data were presented graphically in a manner that reflects the potential effect of detection limits. In surface water samples with virus detections, Escherichia coli concentrations were often below (in compliance with) the recreational water quality criteria. In fact, sites downstream of direct inputs of municipal wastewater effluent exhibited the lowest concentrations of E. coli, but the highest concentrations of human-associated Bacteroidales and highest detection rates of human viruses. The toolkit, comprised of the four Bacteroidales assays and human virus assays used, can be successfully applied to inform watershed managers seeking to comply with recreational water quality criteria. However, care should be taken when analyzing data to account for the effect of non-detect samples, sources with differing microbial viability, and diverging hydrologic conditions.Fil: Bambic, Dustin G.. University of California at Davis; Estados UnidosFil: Kildare Hann, Beverly J.. University of California at Davis; Estados UnidosFil: Rajal, Verónica Beatriz. University of California at Davis; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sturm, Belinda S. M.. University of California at Davis; Estados UnidosFil: Minton, Chris B.. Larry Walker Associates; Estados UnidosFil: Schriewer, Alexander. University of California at Davis; Estados UnidosFil: Wuertz, Stefan. University of California at Davis; Estados Unidos. Nanyang Technological University; Singapu

    Implications of Fecal Bacteria Input from Latrine-Polluted Ponds for Wells in Sandy Aquifers

    No full text
    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5-1.3 log(10)/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater
    corecore