14 research outputs found

    Deep neural networks for analysis of fisheries surveillance video and automated monitoring of fish discards

    Get PDF
    We report on the development of a computer vision system that analyses video from CCTV systems installed on fishing trawlers for the purpose of monitoring and quantifying discarded fish catch. Our system is designed to operate in spite of the challenging computer vision problem posed by conditions on-board fishing trawlers. We describe the approaches developed for isolating and segmenting individual fish and for species classification. We present an analysis of the variability of manual species identification performed by expert human observers and contrast the performance of our species classifier against this benchmark. We also quantify the effect of the domain gap on the performance of modern deep neural network-based computer vision systems

    Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs

    No full text
    Corn-fermented protein (CFP), a co-product from the ethanol industry, is produced using post-fermentation technology to split the protein and yeast from fiber prior to drying. The objective of this study was to determine the effect of CFP compared to traditional ingredients on the fecal microbiota of dogs. The four experimental diets included a control with no yeast and diets containing either 3.5% brewer’s dried yeast, 2.5% brewer’s dried yeast plus 17.5% distiller’s dried grains with solubles, or 17.5% CFP. The experimental diets were fed to adult dogs (n = 12) in a 4 × 4 replicated Latin square design. Fresh fecal samples (n = 48) were analyzed by 16S metagenomic sequencing. Raw sequences were processed through mothur. Community diversity was evaluated in R. Relative abundance data were analyzed within the 50 most abundant operational taxonomic units using a mixed model of SAS. Alpha and beta diversity were similar for all treatments. Predominant phyla among all samples were Firmicutes (73%), Bacteroidetes (15%), Fusobacteria (8%), and Actinobacteria (4%). There were no quantifiable (p > 0.05) shifts in the predominant phyla among the treatments. However, nine genera resulted in differences in relative abundance among the treatments. These data indicate that compared to traditional ingredients, CFP did not alter the overall diversity of the fecal microbiota of healthy adult dogs over 14 days

    High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS

    Full text link
    Corner of Vygekraal & Kunene Roads, Primrose Park, Cape Town. Located in the Cape Flats, in a former coloured area under the apartheid regime.exterior, southeastern elevation, with imam's residence at right, 198

    High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS

    No full text
    Cholesterol is a crucial lipid within the plasma membrane of mammalian cells. Recent biochemical studies showed that one pool of cholesterol in the plasma membrane is "accessible" to binding by a modified version of the cytolysin perfringolysin O (PFO*), whereas another pool is sequestered by sphingomyelin and cannot be bound by PFO* unless the sphingomyelin is destroyed with sphingomyelinase (SMase). Thus far, it has been unclear whether PFO* and related cholesterol-binding proteins bind uniformly to the plasma membrane or bind preferentially to specific domains or morphologic features on the plasma membrane. Here, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, in combination with 15N-labeled cholesterol-binding proteins (PFO* and ALO-D4, a modified anthrolysin O), to generate high-resolution images of cholesterol distribution in the plasma membrane of Chinese hamster ovary (CHO) cells. The NanoSIMS images revealed preferential binding of PFO* and ALO-D4 to microvilli on the plasma membrane; lower amounts of binding were detectable in regions of the plasma membrane lacking microvilli. The binding of ALO-D4 to the plasma membrane was virtually eliminated when cholesterol stores were depleted with methyl-β-cyclodextrin. When cells were treated with SMase, the binding of ALO-D4 to cells increased, largely due to increased binding to microvilli. Remarkably, lysenin (a sphingomyelin-binding protein) also bound preferentially to microvilli. Thus, high-resolution images of lipid-binding proteins on CHO cells can be acquired with NanoSIMS imaging. These images demonstrate that accessible cholesterol, as judged by PFO* or ALO-D4 binding, is not evenly distributed over the entire plasma membrane but instead is highly enriched on microvilli

    High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS

    No full text
    Cholesterol is a crucial lipid within the plasma membrane of mammalian cells. Recent biochemical studies showed that one pool of cholesterol in the plasma membrane is “accessible” to binding by a modified version of the cytolysin perfringolysin O (PFO*), whereas another pool is sequestered by sphingomyelin and cannot be bound by PFO* unless the sphingomyelin is destroyed with sphingomyelinase (SMase). Thus far, it has been unclear whether PFO* and related cholesterol-binding proteins bind uniformly to the plasma membrane or bind preferentially to specific domains or morphologic features on the plasma membrane. Here, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, in combination with (15)N-labeled cholesterol-binding proteins (PFO* and ALO-D4, a modified anthrolysin O), to generate high-resolution images of cholesterol distribution in the plasma membrane of Chinese hamster ovary (CHO) cells. The NanoSIMS images revealed preferential binding of PFO* and ALO-D4 to microvilli on the plasma membrane; lower amounts of binding were detectable in regions of the plasma membrane lacking microvilli. The binding of ALO-D4 to the plasma membrane was virtually eliminated when cholesterol stores were depleted with methyl-β-cyclodextrin. When cells were treated with SMase, the binding of ALO-D4 to cells increased, largely due to increased binding to microvilli. Remarkably, lysenin (a sphingomyelin-binding protein) also bound preferentially to microvilli. Thus, high-resolution images of lipid-binding proteins on CHO cells can be acquired with NanoSIMS imaging. These images demonstrate that accessible cholesterol, as judged by PFO* or ALO-D4 binding, is not evenly distributed over the entire plasma membrane but instead is highly enriched on microvilli
    corecore