37 research outputs found

    Ambient light modulation of exogenous attention to threat

    Full text link
    Planet Earth’s motion yields a 50 % day–50 % night yearly balance in every latitude or longitude, so survival must be guaranteed in very different light conditions in many species, including human. Cone- and rod-dominant vision, respectively specialized in light and darkness, present several processing differences, which are—at least partially—reflected in event-related potentials (ERPs). The present experiment aimed at characterizing exogenous attention to threatening (spiders) and neutral (wheels) distractors in two environmental light conditions, low mesopic (L, 0.03 lx) and high mesopic (H, 6.5 lx), yielding a differential photoreceptor activity balance: rod > cone and rod < cone, respectively. These distractors were presented in the lower visual hemifield while the 40 participants were involved in a digit categorization task. Stimuli, both targets (digits) and distractors, were exactly the same in L and H. Both ERPs and behavioral performance in the task were recorded. Enhanced attentional capture by salient distractors was observed regardless of ambient light level. However, ERPs showed a differential pattern as a function of ambient light. Thus, significantly enhanced amplitude to salient distractors was observed in posterior P1 and early anterior P2 (P2a) only during the H context, in late P2a during the L context, and in occipital P3 during both H and L contexts. In other words, while exogenous attention to threat was equally efficient in light and darkness, cone-dominant exogenous attention was faster than rod-dominant, in line with previous data indicating slower processing times for rod- than for cone-dominant visionThis research was supported by the Grants PSI2014-54853-P and PSI2012-37090 from the Ministerio de Economía y Competitividad of Spain (MINECO

    State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data

    Get PDF
    Precise spike coordination between the spiking activities of multiple neurons is suggested as an indication of coordinated network activity in active cell assemblies. Spike correlation analysis aims to identify such cooperative network activity by detecting excess spike synchrony in simultaneously recorded multiple neural spike sequences. Cooperative activity is expected to organize dynamically during behavior and cognition; therefore currently available analysis techniques must be extended to enable the estimation of multiple time-varying spike interactions between neurons simultaneously. In particular, new methods must take advantage of the simultaneous observations of multiple neurons by addressing their higher-order dependencies, which cannot be revealed by pairwise analyses alone. In this paper, we develop a method for estimating time-varying spike interactions by means of a state-space analysis. Discretized parallel spike sequences are modeled as multi-variate binary processes using a log-linear model that provides a well-defined measure of higher-order spike correlation in an information geometry framework. We construct a recursive Bayesian filter/smoother for the extraction of spike interaction parameters. This method can simultaneously estimate the dynamic pairwise spike interactions of multiple single neurons, thereby extending the Ising/spin-glass model analysis of multiple neural spike train data to a nonstationary analysis. Furthermore, the method can estimate dynamic higher-order spike interactions. To validate the inclusion of the higher-order terms in the model, we construct an approximation method to assess the goodness-of-fit to spike data. In addition, we formulate a test method for the presence of higher-order spike correlation even in nonstationary spike data, e.g., data from awake behaving animals. The utility of the proposed methods is tested using simulated spike data with known underlying correlation dynamics. Finally, we apply the methods to neural spike data simultaneously recorded from the motor cortex of an awake monkey and demonstrate that the higher-order spike correlation organizes dynamically in relation to a behavioral demand

    Evoked Potentials in Motor Cortical Local Field Potentials Reflect Task Timing and Behavioral Performance

    No full text
    Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution

    Neurons in area V4 of the macaque translate attended visual features into behaviorally relevant categories

    No full text
    Neural processing at most stages of the primate visual system is modulated by selective attention, such that behaviorally relevant information is emphasized at the expenses of irrelevant, potentially distracting information. The form of attention best understood at the cellular level is when stimuli at a given location in the visual field must be selected (space-based attention). In contrast, fewer single-unit recording studies have so far explored the cellular mechanisms of attention operating on individual stimulus features, specifically when one feature (e.g., color) of an object must guide behavioral responses while a second feature (e.g., shape) of the same object is potentially interfering and therefore must be ignored. Here we show that activity of neurons in macaque area V4 can underlie the selection of elemental object features and their \u201ctranslation\u201d into a categorical format that can directly contribute to the control of the animal's behavior. Comment in: Neuron. 2007 Apr 19;54(2):181-3

    Macaque area V4 neurons translate the attended features of a visual stimulus into behaviorally relevant categories.

    No full text

    Morphology and physiology of primate M- and P-cells

    No full text
    Catarrhines and platyrrhines, the so-called Old- and New-World anthropoids, have different cone photopigments. Postreceptoral mechanisms must have coevolved with the receptors to provide trichromatic color vision, and so it is important to compare postreceptoral processes in these two primate groups, both from anatomical and physiological perspectives. The morphology of ganglion cells has been studied in the retina of catarrhines such as the diurnal and trichromatic Macaca, as well as platyrrhines such as the diurnal, di- or trichromatic Cebus, and the nocturnal, monochromatic Aotus. Diurnal platyrrhines, both di- and trichromats, have ganglion cell classes very similar to those found in catarrhines: M (parasol), P (midget), small-field bistratified, and several classes of wide-field ganglion cells. In the fovea of all diurnal anthropoids, P-cell dendritic trees contact single midget bipolars, which contact single cones. The Aotus retina has far fewer cones than diurnal species, but M- and P-cells are similar to those in diurnal primates although of larger size. As in diurnal anthropoids, in the Aotus, the majority of midget bipolar cells, found in the central 2 mm of eccentricity, receive input from a single cone and the sizes of their axon terminals match the sizes of P-cell dendritic fields in the same region. The visual responses of retinal ganglion cells of these species have been studied using single-unit electrophysiological recordings. Recordings from retinal ganglion cells in Cebus and Aotus showed that they have very similar properties as those in the macaque, except that P-cells of mono- and dichromatic animals lack cone opponency. Whatever the original role of the M- and P-cells was, they are likely to have evolved prior to the divergence of catarrhines and platyrrhines. M- and P-cell systems thus appear to be strongly conserved in the various primate species. The reasons for this may lie in the roles of these systems for both achromatic and chromatic vision.</p
    corecore