27 research outputs found
A Combination of Independent Transcriptional Regulators Shapes Bacterial Virulence Gene Expression during Infection
Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS) suggested that the transcriptional regulator catabolite control protein A (CcpA) influences many of the same genes as the control of virulence (CovRS) two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both ΔccpA and ΔcovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, ΔccpA and ΔcovRΔccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the ΔccpA and ΔcovRΔccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection
Exclusion of an Exotic Top Quark with -4/3 Electric Charge Using Soft Lepton Tagging
We present a measurement of the electric charge of the top quark using \ppbar collisions corresponding to an integrated luminosity of 2.7~fb at the CDF II detector. We reconstruct \ttbar events in the lepton+jets final state and use kinematic information to determine which -jet is associated with the leptonically- or hadronically-decaying -quark. Soft lepton taggers are used to determine the -jet flavor. Along with the charge of the boson decay lepton, this information permits the reconstruction of the top quark's electric charge. Out of 45 reconstructed events with expected background events, 29 are reconstructed as \ttbar with the standard model 2/3 charge, whereas 16 are reconstructed as \ttbar with an exotic charge. This is consistent with the standard model and excludes the exotic scenario at 95\% confidence level. This is the strongest exclusion of the exotic charge scenario and the first to use soft leptons for this purpose.We present a measurement of the electric charge of the top quark using pp̅ collisions corresponding to an integrated luminosity of 2.7 fb-1 at the CDF II detector. We reconstruct tt̅ events in the lepton+jets final state. We use soft lepton taggers to determine the flavor of the b jets, which we use to reconstruct the top quark’s electric charge and exclude an exotic top quark with -4/3 charge at 95% confidence level. This is the strongest exclusion of the exotic charge scenario and the first to use soft leptons for this purpose.Peer reviewe