1,092 research outputs found

    V2:Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    Full text link
    The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.Comment: 23 pages, 8 figure

    Bacterial Community Structure of an IFAS-MBRs Wastewater Treatment Plant

    Get PDF
    In this work, the bacterial community putatively involved in BNR events of a UCT-MBMBR pilot plant was elucidated by both culture-dependent and metagenomics DNA analyses. The presence of bacterial isolates belonging to Bacillus (in the anoxic compartment) and to Acinetobacter, Stenotrophomonas, Rhodococcus, Escherichia and Aeromonas (in the aerobic compartment) is in agreement with the nitrification/denitrification processes observed in the plant. Moreover, the study of bacterial community structure by NGS revealed a microbial diversity suggesting a biochemical complexity which can be further explored and exploited to improve UCT-MBMBR plant performance

    Bacterial Community Structure of an IFAS-MBRs Wastewater Treatment Plant

    Get PDF
    In this work, the bacterial community putatively involved in BNR events of a UCT-MBMBR pilot plant was elucidated by both culture-dependent and metagenomics DNA analyses. The presence of bacterial isolates belonging to Bacillus (in the anoxic compartment) and to Acinetobacter, Stenotrophomonas, Rhodococcus, Escherichia and Aeromonas (in the aerobic compartment) is in agreement with the nitrification/denitrification processes observed in the plant. Moreover, the study of bacterial community structure by NGS revealed a microbial diversity suggesting a biochemical complexity which can be further explored and exploited to improve UCT-MBMBR plant performance

    The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in <i>Streptomyces</i>

    Get PDF
    The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway. </jats:p

    Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans

    Get PDF
    Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl-DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control. © 2013 The Author(s)

    A connection between stress and development in the multicelular prokaryote Streptomyces coelicolor

    Get PDF
    Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. sH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of sH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and sH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of sH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis

    Optimized RNA Extraction and Northern Hybridization in Streptomycetes

    Get PDF
    Northern blot hybridization is a useful tool for analyzing transcript patterns. To get a picture of what really occurs in vivo, it is necessary to use a protocol allowing full protection of the RNA integrity and recovery and unbiased transfer of the entire transcripts population. Many protocols suffer from severe limitations including only partial protection of the RNA integrity and/or loss of small sized molecules. Moreover, some of them do not allow an efficient and even transfer in the entire sizes range. These difficulties become more prominent in streptomycetes, where an initial quick lysis step is difficult to obtain. We present here an optimized northern hybridization protocol to purify, fractionate, blot, and hybridize Streptomyces RNA. It is based on grinding by a high-performance laboratory ball mill, followed by prompt lysis with acid phenol-guanidinium, alkaline transfer, and hybridization to riboprobes. Use of this protocol resulted in sharp and intense hybridization signals relative to long mRNAs previously difficult to detect

    Statistical shape modelling of the thoracic spine for the development of pedicle screw insertion guides

    Get PDF
    Spinal fixation and fusion are surgical procedures undertaken to restore stability in the spine and restrict painful or degenerative motion. Malpositioning of pedicle screws during these procedures can result in major neurological and vascular damage. Patient-specific surgical guides offer clear benefits, reducing malposition rates by up to 25%. However, they suffer from long lead times and the manufacturing process is dependent on third-party specialists. The development of a standard set of surgical guides may eliminate the issues with the manufacturing process. To evaluate the feasibility of this option, a statistical shape model (SSM) was created and used to analyse the morphological variations of the T4–T6 vertebrae in a population of 90 specimens from the Visible Korean Human dataset (50 females and 40 males). The first three principal components, representing 39.7% of the variance within the population, were analysed. The model showed high variability in the transverse process (~ 4 mm) and spinous process (~ 4 mm) and relatively low variation (< 1 mm) in the vertebral lamina. For a Korean population, a standardised set of surgical guides would likely need to align with the lamina where the variance in the population is lower. It is recommended that this standard set of surgical guides should accommodate pedicle screw diameters of 3.5–6 mm and transverse pedicle screw angles of 3.5°–12.4°
    corecore