246 research outputs found

    The CNGS Neutrino Beam

    Get PDF
    The CERN to Gran Sasso Neutrino beam (CNGS) was commissioned at CERN in early August 2006 and was first sent at low intensity to Gran Sasso on August 17, 2006. The Borexino, LVD and OPERA experiments continued the commissioning of their detectors and started taking data with practically no dead time. The CNGS collected several hundred events with clean time distributions.Comment: 11 pages, 14 EPS figures. Lecture given at the 2nd Latin American School on Cosmic Rays and Astrophysics, Puebla, Mexico, 30th August - 8th September 200

    Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment

    Full text link
    The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to be published in the conference proceeding

    The angular distribution of the reaction Μˉe+p→e++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction Μˉe+p→e++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (EÎœâ‰Č60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for EÎœâ‰Č60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating Μˉe+p→e++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions Μˉe+d→e++n+n\bar{\nu}_e + d \to e^+ + n + n and Îœe+d→e−+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction Μˉe+p→e++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    Measurement of a small atmospheric ΜΌ/Μe\nu_\mu/\nu_e ratio

    Full text link
    From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900 muon-like and 983 electron-like single-ring atmospheric neutrino interactions were detected with momentum pe>100p_e > 100 MeV/cc, pΌ>200p_\mu > 200 MeV/cc, and with visible energy less than 1.33 GeV. Using a detailed Monte Carlo simulation, the ratio (Ό/e)DATA/(Ό/e)MC(\mu/e)_{DATA}/(\mu/e)_{MC} was measured to be 0.61±0.03(stat.)±0.05(sys.)0.61 \pm 0.03(stat.) \pm 0.05(sys.), consistent with previous results from the Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure

    The ICARUS T600 Experiment in the Gran Sasso Underground Laboratory

    Get PDF
    With a mass of about 600 tons of Liquid Argon (LAr), the ICARUS T600 detector is the biggest, up to now, LAr Time Projection Chamber (TPC). Following its successful test run, on the Earth surface, in Pavia (Italy) in 2001, the detector is now very close to start data taking in the Gran Sasso underground laboratory. The main features of the LAr TPC technique, together with a short discussion of some of the ICARUS T600 test run results, are presented in this paper

    Observation of the east-west anisotropy of the atmospheric neutrino flux

    Get PDF
    The east-west anisotropy, caused by the deflection of primary cosmic rays in the Earth's magnetic field, is observed for the first time in the flux of atmospheric neutrinos. Using a 45 kt-year exposure of the Super-Kamiokande detector, 552 e-like and 633 mu-like horizontally-going events are selected in the momentum range between 400 and 3000 MeV/c. The azimuthal distribution of e-like and mu-like events agrees with the expectation from atmospheric neutrino flux calculations that account for the geomagnetic field, verifying that the geomagnetic field effects in the production of atmospheric neutrinos in the GeV energy range are well understood.Comment: 8 pages,3 figures revtex, submitted to PR

    Measurement of radon concentrations at Super-Kamiokande

    Full text link
    Radioactivity from radon is a major background for observing solar neutrinos at Super-Kamiokande. In this paper, we describe the measurement of radon concentrations at Super-Kamiokande, the method of radon reduction, and the radon monitoring system. The measurement shows that the current low-energy event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the Super-Kamiokande water of less than 1.4 mBq/m3^3.Comment: 11 pages, 4 figure
    • 

    corecore