103 research outputs found

    Traumatic Brain Injury Recovery Care: Demand Forecasting, Staffing, and Treatment Planning

    Get PDF
    Improvised Explosive Device attacks have skyrocketed since the start of the War on Terror. Many troops wounded by these tactics receive long-lasting unseen wounds including Traumatic Brain Injury (TBI). TBI sufferers are treated along with other casualties. This has created an increasing, and varying, demand for ongoing post operative recovery care for troops returning from deployments. Diagnosis and treatment for TBI wounded troops is costly. This thesis is motivated by the recognition that budgets are constrained yet quality of care should not be compromised. Additive Holtz-Winters smoothing is used to forecast overall patient care demand, a regression based on queueing theory determines care consultant staffing levels, and reliability theory quantifies the idea of reducing cost by reducing parallel treatment planning. The scope is the Warfighter Rehabilitation Centers and AF Warrior and Survivor Care with data from SMEs, the Brookings Institution, and icasualties.org. This thesis provides a step-by-step methodology and analyzes the actual situation that leadership encountered from 2010-2012

    Detailed spectral and morphological analysis of the shell type SNR RCW 86

    Full text link
    Aims: We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW~86 and for insights into the production mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods: We analyzed High Energy Spectroscopic System data that had increased sensitivity compared to the observations presented in the RCW~86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results:We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5~keV X-ray data reveals a correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is best described by a power law with an exponential cutoff at Ecut=(3.5±1.2stat)E_{cut}=(3.5\pm 1.2_{stat}) TeV and a spectral index of Γ\Gamma~1.6±0.21.6\pm 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW~86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to \sim0.1\% of the initial kinetic energy of a Type I a supernova explosion. When using a hadronic model, a magnetic field of BB~100μ\muG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E2^{-2} spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Γp\Gamma_p~1.7 would be required, which implies that ~7×1049/ncm37\times 10^{49}/n_{cm^{-3}}erg has been transferred into high-energy protons with the effective density ncm3=n/1n_{cm^{-3}}=n/ 1 cm^-3. This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1~cm^-3.Comment: accepted for publication by A&

    The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud

    Get PDF
    The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A is, surprisingly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a gamma-ray source population in an external galaxy, and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a superbubble.Comment: Published in Science Magazine (Jan. 23, 2015). This ArXiv version has the supplementary online material incorporated as an appendix to the main pape

    Diffuse Galactic gamma-ray emission with H.E.S.S

    Get PDF
    Diffuse γ-ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeV energies over several decades, assessments of diffuse γ-ray emission at TeV energies remain sparse. After completion of the systematic survey of the inner Galaxy, the H.E.S.S. experiment is in a prime position to observe large-scale diffuse emission at TeV energies. Data of the H.E.S.S. Galactic Plane Survey are investigated in regions off known γ-ray sources. Corresponding γ-ray flux measurements were made over an extensive grid of celestial locations. Longitudinal and latitudinal profiles of the observed γ-ray fluxes show characteristic excess emission not attributable to known γ-ray sources. For the first time large-scale γ-ray emission along the Galactic plane using imaging atmospheric Cherenkov telescopes has been observed. While the background subtraction technique limits the ability to recover modest variation on the scale of the H.E.S.S. field of view or larger, which is characteristic of the inverse Compton scatter-induced Galactic diffuse emission, contributions of neutral pion decay as well as emission from unresolved γ-ray sources can be recovered in the observed signal to a large fraction. Calculations show that the minimum γ-ray emission from π0 decay represents a significant contribution to the total signal. This detection is interpreted as a mix of diffuse Galactic γ-ray emission and unresolved sources

    Probing the gamma-ray emission from HESS J1834-087 using H.E.S.S. and Fermi LAT observations

    Get PDF
    Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E> 100 GeV) γ-ray source, HESS J1834−087, coincident with the supernova remnant (SNR) W41. The origin of the γ-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The γ-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the γ-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (σTeV = 0.17° ± 0.01°), both centered on SNR W41 and exhibiting spectra described by a power law with index ΓTeV ≃ 2.6. The GeV source detected with Fermi LAT is extended (σGeV = 0.15° ± 0.03°) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index ΓGeV = 2.15 ± 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the γ-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to γ-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (>1037 erg s-1). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the γ-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling

    Discovery of the Hard Spectrum VHE γ-Ray Source HESS J1641-463

    Get PDF
    This Letter reports the discovery of a remarkably hard spectrum source, HESS J1641−463, by the High Energy Stereoscopic System (H.E.S.S.) in the very high energy (VHE) domain. HESS J1641−463 remained unnoticed by the usual analysis techniques due to confusion with the bright nearby source HESS J1640−465. It emerged at a significance level of 8.5 standard deviations after restricting the analysis to events with energies above 4 TeV. It shows a moderate flux level of phgr(E>1 TeV) = (3.64 ± 0.44stat ± 0.73sys) × 10−13 cm−2 s−1, corresponding to 1.8% of the Crab Nebula flux above the same energy, and a hard spectrum with a photon index of Γ = 2.07 ± 0.11stat ± 0.20sys. It is a point-like source, although an extension up to a Gaussian width of σ = 3 arcmin cannot be discounted due to uncertainties in the H.E.S.S. point-spread function. The VHE γ-ray flux of HESS J1641−463 is found to be constant over the observed period when checking time binnings from the year-by-year to the 28 minute exposure timescales. HESS J1641−463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1. No X-ray candidate stands out as a clear association; however, Chandra and XMM-Newton data reveal some potential weak counterparts. Various VHE γ-ray production scenarios are discussed. If the emission from HESS J1641−463 is produced by cosmic ray protons colliding with the ambient gas, then their spectrum must extend close to 1 PeV. This object may represent a source population contributing significantly to the galactic cosmic ray flux around the knee

    Constraints on an Annihilation Signal from a Core of Constant Dark Matter Density around the Milky Way Center with H.E.S.S.

    Full text link

    VizieR Online Data Catalog: W49B with H.E.S.S. and Fermi-LAT (HESS+, 2018)

    Get PDF
    File hessmap.fit contains the gamma-ray excess map obtained with H.E.S.S. in the direction of the supernova remnant W49B

    VizieR Online Data Catalog: RX J1713.7-3946 HESS spectrum (HESS+, 2018)

    Get PDF
    FITS files with the very high-energy gamma-ray images, Fig.1, and the spectrum, Fig.3, as ascii text file. (3 data files)
    corecore