207 research outputs found

    Synthesis and conformational properties of 3,4-difluoro-L-prolines

    Get PDF
    Fluorinated proline derivatives have found diverse applications in areas ranging from medicinal chemistry over structural biochemistry to organocatalysis. Depending on the stereochemistry of monofluorination at the proline 3- or 4-position, different effects on the conformational properties of proline (ring pucker, cis/trans isomerization) are introduced. With fluorination at both 3- and 4-positions, matching or mismatching effects can occur depending on the relative stereochemistry. Here we report, in full, the syntheses and conformational properties of three out of the four possible 3,4-difluoro-L-proline diastereoisomers. The yet unreported conformational properties are described for (3S,4S)- and (3R,4R)-difluoro-L-proline, which are shown to bias ring pucker and cis/trans ratios on the same order of magnitude as their respective monofluorinated progenitors, although with significantly faster amide cis/trans isomerization rates. The reported analogues thus expand the scope of available fluorinated proline analogues as tools to tailor proline's distinct conformational and dynamical properties, allowing for the interrogation of its role in, for instance, protein stability or folding

    The solution structure and self-association properties of the cyclic lipodepsipeptide pseudodesmin A support its pore-forming potential

    Get PDF
    Pseudodesmin A is a cyclic lipodepsipeptide (CLP) of the viscosin group with a moderate in vitro biological activity. For several CLPs, including members of this group, this activity has been related to the ability to form ion pores in cellular membranes. As their size does not allow individual CLPs to span the membrane bilayer, individual monomers must somehow assemble into a larger structure. NMR spectroscopy has been used to demonstrate that in chloroform and other apolar organic solvents, pseudodesmin A monomers assemble into a supramolecular structure. These self-assembled structures can become sufficiently large to span the membrane bilayer as demonstrated with translational diffusion NMR spectroscopic measurements. With the aim to obtain more insight into the structural nature of this assembly, the solution conformation of pseudodesmin A was first determined by using ROESY (rOe) restraints measured in acetonitrile, in which no selfassociation occurs. The structure, which is found to be mostly similar to the previously described crystal structure, is shown to be retained within the supramolecular complex. Intermolecular rOe contacts obtained in chloroform together with chemical shift perturbation data provides structural insight into the organization of the selfassociated complex. Based upon this analysis, a model for the organization of pseudodesmin A monomers in the supramolecular assembly is proposed, which is in agreement with the formation of bilayer spanning hydrophilic pores and provides the basis for a structure–function relationship for this type of CLPs. Finally, it is demonstrated that the differences previously reported between the crystal and solution conformation of the white line inducing principle (WLIP), a close analogue of pseudodesmin A, are the result of the use of dimethyl sulfoxide as solvent, whose strong hydrogen-bonding capacity induces conformational exchange

    Putting into Practice Domain-Linear Motif Interaction Predictions for Exploration of Protein Networks

    Get PDF
    PDZ domains recognise short sequence motifs at the extreme C-termini of proteins. A model based on microarray data has been recently published for predicting the binding preferences of PDZ domains to five residue long C-terminal sequences. Here we investigated the potential of this predictor for discovering novel protein interactions that involve PDZ domains. When tested on real negative data assembled from published literature, the predictor displayed a high false positive rate (FPR). We predicted and experimentally validated interactions between four PDZ domains derived from the human proteins MAGI1 and SCRIB and 19 peptides derived from human and viral C-termini of proteins. Measured binding intensities did not correlate with prediction scores, and the high FPR of the predictor was confirmed. Results indicate that limitations of the predictor may arise from an incomplete model definition and improper training of the model. Taking into account these limitations, we identified several novel putative interactions between PDZ domains of MAGI1 and SCRIB and the C-termini of the proteins FZD4, ARHGAP6, NET1, TANC1, GLUT7, MARCH3, MAS, ABC1, DLL1, TMEM215 and CYSLTR2. These proteins are localised to the membrane or suggested to act close to it and are often involved in G protein signalling. Furthermore, we showed that, while extension of minimal interacting domains or peptides toward tandem constructs or longer peptides never suppressed their ability to interact, the measured affinities and inferred specificity patterns often changed significantly. This suggests that if protein fragments interact, the full length proteins are also likely to interact, albeit possibly with altered affinities and specificities. Therefore, predictors dealing with protein fragments are promising tools for discovering protein interaction networks but their application to predict binding preferences within networks may be limited

    An Amyloidogenic Sequence at the N-Terminus of the Androgen Receptor Impacts Polyglutamine Aggregation

    Get PDF
    The human androgen receptor (AR) is a ligand inducible transcription factor that harbors an amino terminal domain (AR-NTD) with a ligand-independent activation function. AR-NTD is intrinsically disordered and displays aggregation properties conferred by the presence of a poly-glutamine (polyQ) sequence. The length of the polyQ sequence as well as its adjacent sequence motifs modulate this aggregation property. AR-NTD also contains a conserved KELCKAVSVSM sequence motif that displays an intrinsic property to form amyloid fibrils under mild oxidative conditions. As peptide sequences with intrinsic oligomerization properties are reported to have an impact on the aggregation of polyQ tracts, we determined the effect of the KELCKAVSVSM on the polyQ stretch in the context of the AR-NTD using atomic force microscopy (AFM). Here, we present evidence for a crosstalk between the amyloidogenic properties of the KELCKAVSVSM motif and the polyQ stretch at the AR-NTD

    Chemical synthesis of transactivation domain (TAD) of tumor suppressor protein p53 by native chemical ligation of three peptide segments

    Get PDF
    Chemical composition of tumor suppressor protein p53 is altered via multiple post-translational modifications which modulate its cellular lifetime and interactions with other biomolecules. Here we report total chemical synthesis of a 61-residue form of transactivation domain (TAD) of p53 based on native chemical ligation of three peptide segments. The experiments to characterize its binding to nuclear co-activator binding domain (NCBD) of CREB-binding protein confirmed native-like induced folding upon binding to NCBD. Thus, the synthetic approach described herein can be useful for the preparation of various post-translationally modified analogues of TAD-p53 for further functional biochemical and biophysical studies.The research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-2016-StG, grant number 715062-HiChemSynPro)

    Tabletop imaging of structural evolutions in chemical reactions

    Full text link
    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using VUV light from a Free Electron Laser [Phys. Rev. Lett. 105, 263002 (2010)]. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond-breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and definitively quantitative ab initio trajectory simulations

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17 that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth
    • …
    corecore