

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access.

This item is the archived peer-reviewed author-version of:

The solution structure and self-association properties of the cyclic lipodepsipeptide pseudodesmin A support its pore forming potential

Davy Sinnaeve, Pieter M. S. Hendrickx, Johan Van hemel, Eric Peys, Bruno Kieffer and José C. Martins

http://www3.interscience.wiley.com/cgi-bin/fulltext/122652767/PDFSTART

To refer to or to cite this work, please use the citation to the published version:

D. Sinnaeve, P. M. S. Hendrickx, J. Van hemel, E. Peys, B. Kieffer and J. C. Martins (2009) The solution structure and self-association properties of the cyclic lipodepsipeptide pseudodesmin A support its pore forming potential, Chem. Eur. J. 15, (46), 12653-12662, DOI: 10.1002/chem.200901885

DOI: 10.1002/chem.200((will be filled in by the editorial staff))

The solution structure and self-association properties of the cyclic lipodepsipeptide pseudodesmin A support its pore forming potential

Davy Sinnaeve,*^[a] Pieter M. S. Hendrickx,^[a] Johan Van hemel,^[b] Eric Peys,^[b] Bruno Kieffer^[c] and José C. Martins*^[a]

Abstract: Pseudodesmin A is a cyclic lipodepsipeptide (CLP) of the viscosin group with a moderate in vitro biological activity. For several CLPs, including members of this group, this activity has been related to the ability to form ion pores in cellular membranes. As their size does not allow individual CLPs to span the membrane bilayer, individual monomers must somehow assemble into a larger structure. Here, NMR has been used to demonstrate that in chloroform and other apolar organic solvents, pseudodesmin A monomers assemble into supramolecular а self-assembled structure. These structures can become sufficiently large to span the membrane bilayer as demonstrated with translational

diffusion NMR measurements. With the aim to obtain more insight into the structural nature of this assembly, the solution conformation of pseudodesmin A was first determined using rOe restraints measured in acetonitrile. where no self-association occurs. The structure, which is found to be mostly similar to the previously described crystal structure, is shown to be retained within the supramolecular complex. Intermolecular rOe contacts obtained in chloroform together with perturbation data shift chemical provides structural insight into the organization of the self-associated complex. Based upon this analysis, a for the organization model of pseudodesmin A monomers in the

supramolecular assembly is proposed, which is in agreement with the of spanning formation bilayer hydrophilic pores, providing the basis for a structure-function relationship for this type of CLPs. Finally, it is demonstrated that the differences previously reported between the crystal and solution conformation of WLIP, a close analogue of pseudodesmin A, are the result of the use of DMSO as solvent, whose strong hydrogen induces bonding capacity conformational exchange.

Keywords: cyclic lipodepsipeptide • WLIP • diffusion NMR • selfassembly • ion channels

Introduction

Cyclic lipodepsipeptides (CLPs)^[1, 2] are small molecules that consist of an oligopeptide chain that is at least partially cyclised through a lactone (or depsi) bond between the C-terminus and a side chain alcohol group, while the N-terminus is coupled to a fatty acid

 D. Sinnaeve, Dr. P. M. S. Hendrickx, Prof. Dr. J. C. Martins NMR and Structure Analysis Unit Department of Organic Chemistry Ghent University Krijgslaan 281 S4, B-9000 Gent (Belgium) Fax: +32 (0)9 264 4972 E-mail: Davy.Sinnaeve@UGent.be, Jose.Martins@UGent.be

- [b] Dr. J. Van hemel, Dr. E. Peys Kemin Pharma Atealaan 4H, B-2200 Herentals (Belgium)
- [c] Prof. Dr. B. Kieffer
 IGBMC
 Biomolecular NMR group
 1 rue Laurent Fries BP 10142, 67404 Illkirch CEDEX (France)

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author. moiety via an amide bond. These compounds are produced as secondary metabolites by several micro-organisms, including *Pseudomonas* bacteria, and mostly consist of uncommon or modified amino acids, such as D-amino acids. Pseudodesmin $A^{[3]}$ is a recently isolated member of the viscosin group of CLPs^[1, 2]. It consists of a nonapeptide chain where the depsi bond involves the D-*allo*-Thr3 side chain, while the N-terminus is connected to a 3-hydroxydecanoic acid (HDA) moiety (Figure 1). It was found to display bacteriostatic activity mainly against Gram positive bacteria. Its crystal structure, revealed by X-ray diffraction of crystals obtained from acetonitrile solution^[3], features a short left handed α -helix ranging between D-Gln2 and D-Leu5 followed by a three

Figure 1. Chemical structure of pseudodesmin A.

residue loop connecting the C-terminus of the helix with the D-*allo*-Thr3 side chain to make the lactone bond

Members of the various CLP groups display a variety of moderate biological effects, including antimicrobial activity^[2]. In several cases, the mechanism for this activity has been ascribed to the formation of passive transport ion pores in the cellular membrane^[4, 5] in a fashion similar to what is generally described for (non cyclic) antimicrobial peptides (AMPs)^[6, 7]. For instance, syringomycin, a CLP very different from the viscosin group members, is described to form pores that allow Ca²⁺ to transport passively, initiating phosphorylation of several proteins and disturbing ATPase function^[5]. Within the viscosin group, the White Line Inducing Principle (WLIP)^[8] is a close analogue of pseudodesmin A, differing only in a D-Gln to D-Glu substitution. It has been shown to insert itself within model membranes^[4], while its pore forming capability was demonstrated on erythrocytes using osmotic protectants^[9]. The crystal structures of WLIP and pseudodesmin A are highly similar and both are amphipatic in nature, with a large amount of the molecular surface covered by hydrophobic side chains and a smaller surface by hydrophilic ones^[3]. Taking these elements together, the hypothesis of a membrane insertion followed by in situ assembly into a supramolecular ion pore structure would appear as a plausible explanation for their biological function.

A common procedure to study the structure and behaviour of a membrane-bound peptide by solution NMR methods is to use artificial lipid micelles or bicelles^[10]. However, due to the limited amount of material available and the desirability to recuperate the product, an alternative approach was chosen for pseudodesmin A. In this work, pseudodesmin A was dissolved in simple apolar organic solvents, such as chloroform, thereby inducing strong selfassociation behaviour. The concentration and solvent polarity dependency of the self-association is initially studied using translational diffusion NMR measurements. To further examine the main aspects of the supramolecular structure in chloroform, the solution structure of pseudodesmin A was first determined by NMR in acetonitrile, where no self-association occurs. The solution structure is found to be very similar to the crystal structure and is further shown to be mostly preserved in chloroform. Starting from this solution structure, intermolecular rOe correlations are used to identify intermolecular contact surfaces, from which a possible assembly scenario relevant to pore formation is derived. In addition, a long standing issue regarding the marked difference between the crystal and solution conformation of WLIP is resolved by showing that it is linked to the occurrence of conformational exchange due to the choice of DMSO as solvent.

Results

Pseudodesmin A self-associates in apolar solvents: When pseudodesmin A is dissolved at 2 to 3 mM concentration in a variety of solvents, a single, well-defined set of resonances is observed in all cases. However, the line-width properties of the pseudodesmin A resonances are highly dependent on the solvent used. Figure 2 compares the aliphatic region of the 1D ¹H spectra recorded in acetonitrile and chloroform solution, from which it is clear that all resonance line widths are significantly increased in chloroform. Similar effects were also apparent in other apolar solvents that were tested, dioxane and benzene, while in the more polar DMF or acetone this was not the case (supporting information). Line-

Figure2. Aliphatic region of the 700.13 MHz ^1H NMR spectrum in (a) ca 2mM acetonitrile and (b) 20.5 mM chloroform.

broadening generally reflects an increase in the transverse relaxation rate R₂. Since all pseudodesmin A resonances are affected equally and the effect does not seem to increase with the magnetic field, an exchange process is not the dominant source for the line broadening. Therefore it appears most likely that an increase in the global molecular rotational correlation time τ_c lies at the basis of this phenomenon, since $R_2 \sim \tau_c$ and the latter is dependent on both solvent viscosity and molecular size. Though the viscosity of chloroform is about 1.5 times higher than acetonitrile, it is insufficient to explain the strong line width changes observed. This is confirmed by measuring the translational diffusion coefficient of pseudodesmin A using PFG-NMR techniques and calculating the hydrodynamic (or Stokes) radius R_H using the Stokes-Einstein relation and the known viscosity of each solvent^[11] (Table 1). In acetonitrile solution, the value of 7.2 Å is in agreement with the dimensions of a pseudodesmin A molecule as determined from its crystal structure. However, in chloroform the observed R_H value is both much higher and concentration dependent. This confirms that pseudodesmin A self-associates into larger aggregates when exposed to apolar solvents, while in acetonitrile or other polar solvents the compound remains in a monomeric state. At the highest concentration in chloroform measured (20.5 mM), the R_H value is at 38.2 Å, which constitutes a more than five fold increase compared to acetonitrile. When lowering the concentration down to 3.0 mM, the hydrodynamic radius is reduced to 18.4 Å, which is still much higher than in acetonitrile. It is only at the much lower concentration of 0.06 mM that a value close to the one in acetonitrile is found. This concentration dependent change is also reflected by the clear sharpening of all the resonances. It should be noted that only a single set of resonances is visible throughout the entire concentration range investigated. Also, all diffusion induced resonance intensity decays in the PFG-NMR experiments are monoexponential. Together with the concentration dependence of R_H, the data in chloroform is consistent with a process where an indefinite self-association occurs in which individual pseudodesmin A molecules are in a fast exchange equilibrium with a collection of supramolecular complexes of varying size. This concentration dependent size-distribution expected for such association process is then reflected via an averaged diffusion coefficient.

Table 1. Translational diffusion coefficients and hydrodynamic radii of pseudodesmin A

Solvent	D	[µm²s ⁻¹]	[a]	$R_{\rm H} [{\rm \AA}]^{\rm [b]}$
acetonitrile	816.8	±	4.4	7.2
chloroform				
20.5 mM	106.6	±	0.3	38.2
3.0 mM	220.6	±	1.4	18.4
0.06 mM	468.0	±	13.5	8.7

[a] 95% confidence intervals obtained using a Monte Carlo procedure. [b] For the hydrodynamic radius calculation, the viscosity is assumed to be 0.369 mPa-s for acetonitrile and 0.537 mPa-s for chloroform^[11].

To further assess the effect of solvent polarity, a solvent titration experiment at constant pseudodesmin A concentration was performed starting from a solution of ca 2 mM pseudodesmin A in chloroform to which a pseudodesmin A solution in acetonitrile of exactly the same concentration was gradually added to keep the concentration constant. The evolution of the apparent diffusion coefficient of pseudodesmin A is plotted in Figure 3. The diffusion coefficient steadily increases with the acetonitrile volume percent, until at 13% a value is reached of 484.7 \pm 2.8 μ m²s⁻¹, which is similar to the diffusion coefficient of $468.0 \pm 13.5 \ \mu m^2 s^{-1}$ for the 0.06 mM chloroform solution. The diffusion coefficient of added TMS in the sample was followed as well, showing almost no variation (supporting information), and thereby confirming that no significant change in viscosity occurs between the different solvent mixtures. The gradual decrease of the self-association with increasing acetonitrile volume percent clearly demonstrates that the self-association equilibria and thus the size and distribution of the supramolecular structures in solution can be controlled by changing the overall polarity of the solvent.

Solution structure of pseudodesmin A: To gain insight into the organization of the supramolecular structure and more particularly into the contacts that exist between the molecular units, the conformation of the individual monomers within the structure must first be known. Although the crystal structure of pseudodesmin A was previously determined^[3], it was important to assess the conformation in solution. This is because WLIP, a close analogue of pseudodesmin A and the only viscosin group member for which a solution structure is available, has been reported to adopt a conformation in solution that is markedly different from the crystal structure^[8, 12]. Determining the monomer structure directly in chloroform is complicated however since intra- and intermolecular contributions to the nOe correlations cannot a priori be distinguished. Given that the level of dilution required to ensure a monomeric state for pseudodesmin A in chloroform is too large for comfortable NMR based conformational analysis, we first considered determining the structure in acetonitrile solution where the molecule exists in monomer form even at higher concentrations.

Towards this end, 127 rOe distance restraints were collected and used as input in a restrained molecular dynamics simulation followed by energy optimization, the result of which is represented by an ensemble of the 40 lowest energy conformers in Figure 4. The energies and residual violation statistics of the refined conformers (supporting information) indicate a low energy ensemble in good agreement with the experimental data. Only the HDA alkyl chain

Figure 3. Titration of a pseudodesmin A sample in chloroform with acetonitrile. Error bars represent 95% confidence intervals obtained using a Monte Carlo procedure. The tabulated data points can be found in the supporting information.

and the Leu1 residue present significant conformational variability over the ensemble. This is further illustrated by the low torsion angle order parameter^[13] of the L-Leu1 φ angle (0.40), while all other φ and ψ torsion angles possess order parameters of at least 0.99. Finally, the RMSD value of 0.91 \pm 0.21 Å over all 63 heavy atoms except the HDA moiety further drops to 0.12 ± 0.08 Å when only the 7 endocyclic residues are considered. This very low RMSD value should however not necessarily be interpreted as a measure of the actual structural definition in solution, but rather indicates the limited variability allowed by the many constraints imposed during the structure calculation. Importantly however, the overall solution conformation of pseudodesmin A is highly similar to the crystal structure^[3], with an RMSD value of 0.14 Å obtained upon superposition of the 15 backbone atoms of the Leu1-Ser6 segment. Small differences are more apparent from the individual ϕ/ψ backbone angles collected in Table 2. These show that D-Ser6 is more in line with the α -helix rather than being involved in a type I' β -turn as is the case in the crystal structure. The hydrogen bonds that define the α_L helix are clearly present both in the crystal and solution structures. The loop adopts a somewhat different orientation (Figure 5), reflected in the altered ϕ/ψ values of D-Ser8 and L-IIe9. This is accompanied with some changes in the hydrogen bond network (Table 3) involving the loop residues. Careful analysis indicates that these differences should be attributed to the presence of intermolecular hydrogen bonds in the crystal structure, such as the Ile9 NH→Leu5 CO hydrogen bond. All of this notwithstanding, the overall structure obtained by both methods is quasi identical

Figure 4. Overlay of the 40 lowest energy structures of pseudodesmin A. The HDA moiety has been removed for clarity.

Table 2. ϕ and ψ torsion angles of pseudodesmin A solution structure compared with the crystal structure

		Leu1	Gln2	Thr3	Val4	Leu5	Ser6	Leu7	Ser8	Ile9
NMR	$\phi^{[a]}$	[b]	61.4	69.47	64.01	55.5	65.15	-66.01	107	-118.1
	$\psi^{[a]}$	62.07	38.36	37.9	46.52	45.26	22.38	-24.84	18.65	-4.09
Crystal	φ	-60.9	57.09	63.33	61.78	63.12	98.05	-66.43	150.66	-65.99
Cijstai	Ψ	122.69	28.52	40.47	48.59	31.68	1.01	-50.62	-41.21	-6.31

[a] Averaged value of the 40 lowest energy structures. The average of an angle α is defined using the average of the cosine and sine values over all structures: [α]=arctan[$<\sin(\alpha)>/<\cos(\alpha)>$]+k180°, with k=0 if $<\cos(\alpha)>>0$; k=1 if $<\cos(\alpha)><0$ and $<\sin(\alpha)>>0$; k=-1 if $<\cos(\alpha)><0$ and $<\sin(\alpha)><0$. [b] Value omitted due to low order parameter (0.40).

Figure 5. Comparison of the solution (a) and crystal (b) structures of pseudodesmin A showing only the backbone atoms. The helix is shown as a ribbon ($N \rightarrow C$ from bottom to top), while the Leu7-Ile9 loop can be seen making the connection between the C-terminus of the helix and the Thr3 side chain. Note that in the loop Ile9 is oriented differently between both structures.

(Figure 5), in marked contrast with the WLIP case (vide infra).

The results of a 1 H/ 2 H exchange experiment in a CD₃CN/D₂O mixture are in good agreement with the solution structure. As can be seen from Table 4, slow exchange rates on the order of hours to days are found for the amide hydrogens in the Leu5–Ile9 segment. While the Ile9 amide is not involved in any hydrogen bond in the solution structure, its NH bond points inward from the loop to the helix, making it totally solvent inaccessible. The higher exchange rates of both Ser amide hydrogens are most probably caused by participation of the side chain hydroxyl groups in the exchange process with the solvent. The relatively fast exchange rates found for the Leu1, Gln2 and Thr3 amide hydrogens agree with their location at the N-terminal side of the α_L -helix. Although the solution structure predicts a hydrogen sexchanges fairly rapidly. This suggests that the conformation of the exocyclic part is more dynamic. Altogether,

the data indicate that the solution structure in acetonitrile is welldefined and considerably rigid.

An important question is the extent to which the solution structure of pseudodesmin A in acetronitrile, is maintained within the supramolecular structures formed through self-assembly in chloroform. A conformation sensitive parameter that unlike the nOe does not suffer from intra- or intermolecular ambiguity is the ${}^{3}J_{HNH\alpha}$ coupling constant, with the most relevant being the ${}^{3}J_{HNH\alpha}$ couplings reflecting the backbone φ torsion angles. As seen in Table 5, neither their values nor the torsion angles derived from them change to an extent that would indicate major local or global changes in the backbone conformation between the two solvents. Therefore, the solution structure of pseudodesmin A in acetonitrile is a valid model to explore the supramolecular assembly.

Table 3.Overview of pseudodesmin A solution structure hydrogen bonds

Donor	Acceptor	$d_{D\text{-}A}[\text{\AA}]^{[a]}$	angle [°] ^[a]
Val4 NH	HDA CO	2.88	158.95
Leu5 NH	Leu1 CO	2.97	172.42
Ser6 NH	Gln2 CO	2.85	158.70
Ser6 OH	Thr3 CO	2.71	148.36
Leu7 NH	Val4 CO	3.16	154.76
Ser8 NH	Ser6 OH	2.92	158.71
Ser8 OH	Ser6 OH	2.66	165.77

[a] Hydrogen bonds are considered to have a donor-acceptor bond length of at most 3.4 Å and a bond angle of at least 140° .

Table 4. ¹H/²H Exchange kinetics

Amide resonance	k [s ⁻¹] ^[a]	-	t _{1/2} ^[b]	
Leu1	2312.15			5m
Gln2	2327.39			5m
Thr3	1366.82			9m
Val4	923.33			14m
Leu5	3.03	2d	18h	8m
Ser6	75.83		2h	39m
Leu7	1.63	5d	2h	57m
Ser8	27.95		7h	6m
Ile9	1.21	6d	22h	12m
Gln2 NH ₂ 1	836.84			14m
Gln2 NH ₂ 2	805.75			15m

[a] Exchange rate constants k are obtained by fitting the signal intensity decay in function of time t to the equation $I(t) = I(0)[(1 - \alpha)exp(-kt) + \alpha]$, with α the remaining protonated fraction when equilibrium is achieved. [b] The exchange half-lives $t_{1/2}$ (expressed in days (d), hours (h) and minutes (m)) are calculated as $t_{1/2} = -\ln[(0.5 - \alpha)/(1 - \alpha)]/k$.

Indications of intermolecular contacts in the supramolecular structure: A comparison of the NMR data between the two solvents can provide information on how the supramolecular structure is organized. Since the conformation of the individual monomer units within the supramolecular structure is similar to the acetonitrile solution structure, all spatial ¹H-¹H proximity correlations observed in chloroform that cannot be explained by this conformation can be interpreted as intermolecular contacts. 2D NOESY spectra are useless for this purpose, since the large molecular size leads to excessive spin-diffusion even at short mixing times. This is in sharp contrast with NOESY spectra measured in acetonitrile, further emphasizing the strong difference in global rotational correlation time between both solvents (supporting information). Because of this, the possibility to distinguish direct intermolecular contacts

Table 5.comparison of scalar couplings between chloroform and acetonitirile

³ J	J _{CD3CN} [Hz]	J _{CDC13} [Hz]	difference [Hz]	torsion angle difference ^[a] [°]
Leu1 H ^N H ^α	5.7	6.0	-0.4	[b]
$Gln2\;H^{N}H^{\alpha}$	4.0	3.1	0.9	-7.6
Thr3 $H^{N}H^{\alpha}$	7.5	6.2	1.3	-9.7
Val4 $H^{N}H^{\alpha}$	6.3	4.9	1.4	-10.7
Leu5 $H^{N}H^{\alpha}$	4.3	2.9	1.3	-11.4
Ser6 $H^{N}H^{\alpha}$	8.5	8.0	0.5	-4.4
Leu7 $H^{N}H^{\alpha}$	6.5	4.4	2.2	16.3
Ser8 $H^{N}H^{\alpha}$	9.1	8.8	0.3	-3.1
Ile9 $H^{N}H^{\alpha}$	10.7	9.8	0.9	[c]
Thr3 $H^{\alpha}H^{\beta}$	10.7	10.9	-0.2	-1.3

[a] Torsion angles were calculated using a Karplus curve relation with parameterization according to Vuister *et al* for $H^{N}H^{\alpha}$ couplings^[14] and Demarco *et al* for the $H^{\alpha}H^{\beta}$ coupling^[15]. [b] Not compared since the bond is assumed to be flexible in acetonitrile solution. [c] Ile9 $H^{N}H^{\alpha}$ coupling constant in chloroform is out of reach of the Karplus curve, most likely because the unusually attached ester group influences the correct parameterization of the curve.

from intramolecular nOe contacts is lost. The use of 2D ROESY is therefore preferred here. While inherently less sensitive due to the contribution from efficient T_2 relaxation during the 40 ms spin-lock time used here, it has the advantage of a greatly reduced degree of spin diffusion, whereas its presence can be recognized by the occurrence of a sign inversion of the rOe cross-peak^[16].

After cataloguing all rOe correlations in chloroform and confronting them with the solution structure, several contacts were revealed that cannot be expected to arise from a short distance through space or in residue sequence within a single monomer (Table 6). Note that mainly backbone protons are involved, with the H^N protons of the exocyclic Leu1 and Gln2 contacting the H^{α} protons of the loop located at the opposite end of the monomer structure. These particular amides are not involved in any intramolecular hydrogen bonding in the solution structure, which is also true for the carbonyl groups in the loop. Therefore these rOe contacts suggest that the interaction between monomers may be mediated by intermolecular hydrogen bonds involving those two regions. Also noteworthy in this context are the contacts between the side chain amide protons of Gln2 with the loop backbone and the Ser side chains, which may indicate an intermolecular interaction between those hydrophilic side chains

Another probe sensitive to intermolecular contacts is the chemical shift. A solvent titration was performed starting from a solution in chloroform and stepwise adding acetonitrile. The ¹H, ¹³C and ¹⁵N chemical shifts were followed from ¹H-¹³C gHSQC and ¹H-¹⁵N gHSQC spectra recorded for each solvent mixture. The changes in chemical shift are shown in Figure 6 (for tabulated values, see supporting information). The most notable changes (>0.3 ppm) in the ¹H/¹³C chemical shifts occur mainly at those positions where intermolecular rOe contacts were detected as well (Leu7 CH^α, Ser8 CH^α and CH₂^β, HDA CH₂^α). Overall, no strong

Table 6. Intermolecular rOe contacts between ¹H resonances in chloroform

reso	nance 1	resonan	ce 2	$d_{intra} [{\rm \AA}]^{[a]}$	rOe ^[b]
HDA	H^{lpha}	Ser8	H ^α	9.8	strong
HDA	H^{lpha}	Ser6/Ile9 ^[c]	H^{lpha}	9.8/6.6	weak
HDA	H^{γ}	Ser8	H^{lpha}	10.3	strong
Leu1	H^{N}	Ser6	H^{β}	9.0	weak
Leu1	H^N	Leu7	H^{α}	12.5	strong
Leu1	H^{N}	Ser8	H^{lpha}	12.7	strong
Leu1	H^{N}	Ser8	OH^{γ}	9.9	intermediate
Leu1	\mathbf{H}^{N}	Ile9	H^{β}	9.3	strong
Leu1	H^N	Ser6/Ile9 ^[c]	H^{α}	10.7/10.0	intermediate
Gln2	\mathbf{H}^{N}	Leu7	H^{lpha}	11.1	strong
Gln2	\mathbf{H}^{N}	Ser8	H^{lpha}	11.6	strong
Gln2	H^{N}	Ser8	OH^{γ}	8.3	intermediate
Gln2	H^{N}	Ser6/Ile9 ^[c]	H^{lpha}	8.5/9.9	weak
Gln2	H^N	Ile9	H^{β}	9.8	strong
Gln2	$NH_2 \: E^{[d]}$	Ser6	H^{β}	7.3	weak
Gln2	$NH_2Z^{[d]}$	Ser6	H^{β}	8.4	weak
Gln2	NH_2E	Ser6	OH^{γ}	8.8	intermediate
Gln2	NH_2Z	Ser6	OH^{γ}	9.5	weak
Gln2	NH_2E	Leu7/Leu5 ^[c]	H^{α}	13.5/10.5	intermediate
Gln2	NH_2Z	Leu7/Leu5 ^[c]	H^{lpha}	14.3/11.0	intermediate
Gln2	NH_2E	Ser8	H^{lpha}	13.1	strong
Gln2	NH_2Z	Ser8	H^{lpha}	13.9	strong
Gln2	NH_2E	Ser8	OH^{γ}	9.4	weak
Gln2	NH_2Z	Ser8	OH^{γ}	10.3	weak
Gln2	$\mathrm{NH}_{\mathrm{2}}\mathrm{E}$	Ile9	H^{β}	12.7	weak
Gln2	$\mathrm{NH}_2\mathrm{Z}$	Ile9	H^{β}	12.6	weak

[a] Intramolecular distance between the hydrogen atoms within the solution structure. [b] rOe intensity in chloroform solution. [c] Ambiguous assignment. [d] Discrimination of E and Z protons based on Gln2 NH₂ – Gln2 CH₂^{γ} rOe intensities.

changes are detected at the level of the hydrophobic side chains, where the chemical shift perturbations of all methyl groups, except Thr3 CH₃^{γ}, lie between 0.02 ppm and 0.13 ppm. Important perturbations in ¹H/¹⁵N chemical shifts for the Leu1 and Gln2 NH groups are also in agreement with the intermolecular rOe results, while the changes seen for the Leu7 and Ser8 NH groups are a likely consequence of the respective residues being involved in the same intermolecular contact surface. The origin for the considerable changes at the level of the Val4 and Leu5 NH is less obvious. It is conceivable that the association process induces changes in the intramolecular hydrogen bond strength, leading to the observed

changes in the environment sensitive amide chemical shift. However, from their location in the structure we notice that they do not participate in the proposed interface.

Behaviour in DMSO solution: The ¹H and ¹³C NMR spectra of pseudodesmin A at 298 K show clear indications of a conformational exchange process involving two or more conformers. First, several resonances show severe line broadening (supporting information), including most H^N resonances (most notably Gln2, Ser6 and Leu7), several H^{α} resonances (e.g. Ile9, Leu5) and even several ¹³C carbonyl and C^{α} resonances. Since the line broadening is not equally present on all resonances as is the case in chloroform, it is most likely caused by a conformational exchange process that is near a coalescence situation where the exchange rate is on the same order of magnitude of the frequency difference between the different states for those spins ($k_{ex} \sim \Delta v$). This is confirmed by noting that the resonances sharpen as the temperature is increased (kex increases) or the magnetic field strength is lowered (Δv decreases) (supporting information), thus moving the system to a fast exchange situation $(k_{ex} > \Delta v)$. In addition, the temperature dependence of the H^N resonance of Leu1, Gln2 and Ser8 is non-linear, with an initial positive slope that is reversed into the regular negative one at higher temperatures (supporting information). Due to the high melting temperature of DMSO, it is impossible to reach the slow exchange regime even at 700 MHz. Therefore, the exact number and nature of conformational states cannot be established by solution NMR. Nevertheless, there are clear differences in the pattern of rOe contacts in DMSO measured at 323 K, compared to acetonitrile. Most notable are the absence of any correlations between the Leu7 and Val4 residues and the presence of correlations between the Ser6 H^{α} proton and Ile9 CH_2^{γ} and CH_3^{δ} protons. These observations cannot be explained from either the solution or crystal structure.

Discussion

Conformation of pseudodesmin A, WLIP and other viscosin group members: Previously, we established that the crystal structure of pseudodesmin A and WLIP, a viscosin group member that features a D-Glu2 residue instead of D-Gln2, are quasi identical^[3]. Here, we show that the solution structure of pseudodesmin A is mostly similar to these crystal structures, at least in acetonitrile solution. This contrasts with the solution structure of WLIP, previously determined by Mortishire-Smith et al in DMSO^[8] where significant differences were reported between the crystal and solution structure. For instance, the WLIP solution structure features a type II β-turn involving a hydrogen bond between the Ser6 NH and the Ile9 carbonyl. This apparent contradiction can be attributed to the difference in solvent used in both studies. When pseudodesmin A is dissolved in DMSO, several effects described for WLIP are observed as well, including non-linear temperature coefficients for the Leu1, Glu2 and Ser8 H^N resonances and the observation of nOe contacts between Ser6 and Ile9. Also, the same H^N resonances appear broadened due to conformational exchange at room temperature. Keeping in mind that pseudodesmin A can be considered the amide form of WLIP, we propose that both WLIP and pseudodesmin A experience similar conformational exchange in DMSO. Importantly, the validity of the solution conformation of WLIP in DMSO must therefore be questioned, and should not be considered to have biological relevance as it was determined from constraints that are weighted by several conformers. When imposed during structure calculations, these lead to virtual conformations, thereby explaining the discrepancy with the WLIP crystal structure.

Figure 6. Average ${}^{1}H^{/13}C$ (a) and ${}^{1}H^{/15}N$ (b) chemical shift perturbations resulting from a titration of a chloroform solution with acetonitrile. For a tabulation of the values, see the supporting information.

When pseudodesmin A was dissolved in other solvents such as acetone or DMF, the ¹H chemical shifts remained mostly similar to acetonitrile and no line broadening was apparent. The reason for the unique behaviour in DMSO can most probably be related to its very strong hydrogen bonding acceptor capability, even more so than amide carbonyls^[17]. In DMSO solution therefore, the solvent acts as a strong competitor for hydrogen bond interactions and effectively as a denaturant for the cyclic peptide. Because DMSO is a very polar molecule, it would be unreasonable to connect the behaviour of pseudodesmin A in this solvent to its self-association properties, since it would contradict the observed effect of the solvent polarity on the self-assembly.

Several viscosin group members (pseudodesmin $B^{[3]}$, WLIP and the pseudophomins^[18]) vary only slightly in the nature of the side chains compared to pseudodesmin A. Therefore it can confidently be assumed that the conformation and behaviour in solution is similar for all these compounds. The other viscosin group members differ as they possess at the 5 position an L instead of D configuration. Since no solution or crystal structures are know for any of these compounds, the direct impact on the helix structure cannot yet be assessed.

Structural proposal for the supramolecular assembly: It has often been postulated that the biological function and antimicrobial mechanism of CLPs is related to the formation of passive transport ion pores in the cellular membranes^[5]. Although a simple organic solvent environment should not be considered a good mimic for the interior of biological membranes, both share an apolar character. Given the nature and stability of the pseudodesmin A monomer structure, it is reasonable to expect that inside the membrane bilayer, the conformation would also be preserved and thus the same supramolecular structures observed as in apolar solvents will be formed with dimensions naturally imposed by the confines of the membrane bilayer. To the best of our knowledge, this represents the first attempt to link or confront the pore forming capacity of CLPs, such as WLIP, to their individual crystal or solution structures. Based on the pseudodesmin A solution structure in acetonitrile, the observation that its main structural elements are retained in chloroform and using the data concerning intermolecular contacts and chemical shift perturbation, a first model for the supramolecular self-association and therefore the pore forming capacity can be elaborated (Figure 7).

We suggest that two types of distinct intermonomer interactions occur in the assembly of the pore. First, the solution structure of pseudodesmin A shows a clear amphipatic character, with all hydrophobic and hydrophilic residues occurring at positions in the sequence that arrange their side chains on opposite sides of the molecule. This creates a large hydrophobic surface, comprised of all Leu, Ile and Val side chains. A smaller hydrophilic surface includes both the Ser and the Gln residue side chains. When inserted into an apolar solvent or membrane environment, pseudodesmin A molecules can be expected to pack their hydrophilic surfaces together while extending the hydrophobic surfaces outward so to minimize energetically unfavourable hydrophobic-hydrophilic contacts. This idea has been described previously for many AMPs in general^[6], and finds additional support in the previously made observation that the hydrophobic and hydrophilic residue positions are strongly conserved within the viscosin group^[3]. However, such an aggregation would be insufficient to explain the huge change in size observed in apolar environments. In addition, the dimensions of pseudodesmin A, which are on the order of 10-15 Å are too small to span the membrane bilayer (±45 Å). Therefore an additional degree of supramolecular association is proposed.

Inherently, the helix structure possesses free CO and NH groups at its C- and N-terminal ends respectively, while in addition pseudodesmin A has more free CO groups in its loop structure. This creates a build-up of opposite charge at opposing sides of the molecule, effectively creating a macrodipole^[19]. In an apolar solvent or membrane, this can lead to an electrostatically driven alignment of molecules along a direction closely parallel with the helix, most likely with intermolecular NH-CO hydrogen bonds. This is supported by the observed strong intermolecular rOe contacts of the Leu1 and Gln2 H^N with the Leu7 and Ser8 H^{α}. In this manner the 'length' necessary for the pore to span the cellular membrane is created. In addition, it would explain why the self-association is not observed in polar environment, since the polar solvent molecules would quench the need for such alignment.

The formation of intermolecular amide hydrogen bonds gains further support by the results of a FT-infrared spectroscopy study combined with ${}^{1}\text{H}/{}^{2}\text{H}$ exchange of WLIP performed by Coraiola *et* $al^{[4]}$. They detected the presence of non-hydrogen bonded amides in buffer solution, which seemed to decrease when dissolved in model membrane environment. As an alternative for a change in conformation of WLIP proposed by these authors, this could also be

Figure 7. Illustration of the proposed model for the self-association. No actual residue specific intermolecular interactions or detailed arrangement of individual molecules are intended. (a) Top view of an undefined number of pseudodesmin A molecules aggregating their hydrophilic residue side chains (red) towards each other and directing the hydrophobic residue side chains (green) outward. (b) The free NH groups at the N-terminal end of the helix interact through electrostatic interaction with the free CO groups at the C-terminal end or the loop. (c) Both processes combined, a large supramolecular structure is formed with a hydrophilic interior and a hydrophobic exterior.

explained by intermolecular hydrogen bonding between the free NH groups of the N-terminal side of the helix of one molecular unit with the free CO groups of another unit.

With these two processes combined (Figure 7), a large structure forms that can span the membrane, with a hydrophilic interior allowing positively charged ions to coordinate with alcohol or free carbonyl groups, thus creating a channel through the membrane. The function of the HDA chain would then most likely be to increase membrane solubility or facilitate anchoring of the CLP in the membrane by tightly interacting with the lipid chains. The proposed model can be extended to other helix bearing CLPs with amphipatic structure, such as WLIP, the pseudophomins^[20], amphisin^[21] and tensin^[22], which all possess a similar sequence to pseudodesmin A.

Experimental Section

NMR spectroscopy: All NMR measurements were performed on either a Bruker DRX spectrometer operating at a respective ¹H and ¹³C frequency of 500.13 MHz and 125.76 MHz, or a Bruker Avance II spectrometer operating at a respective ¹H, ¹³C and ¹⁵N frequency of 700.13 MHz, 176.05 MHz and 70.94 MHz. In both cases, a ¹H, ¹³C, ¹⁵N TXI-Z probe was used, with z-gradients calibrated to respectively 56.1 Gcm⁻¹ and 57.9 Gcm⁻¹. The sample temperature was set to 298.0 K unless otherwise mentioned. High quality NE-HP5-7 (New Era Ent. Inc) NMR tubes were used. [D₃]Acetonitrile (99.96%), [D₆]acetone (99.96%), [D₆]benzene (99.96%), [D₇]DMF (99.5%) and [D₈]dioxane (99%) from Sigma Aldrich and [D₆]DMSO (99.96%) from Cambridge Isotope Laboratories. Pseudodesmin A was obtained as described previously ^[3].

Because the increased line-width of pseudodesmin A in chloroform prevented the direct extraction of scalar couplings from the 1D ¹H spectra, alternative techniques were required. The Thr3 $^{3}J_{\text{H}\alpha\text{H}\beta}$ scalar coupling in chloroform was obtained using a SERF experiment^[23] at 500.13 MHz and 283.0 K, measured with 32 data points in the indirect dimension and processed with a squared cosine bell window function. All ${}^{3}J_{HNH\alpha}$ couplings in chloroform were obtained from a 3D HNHA experiment^[14] at 700.13 MHz. This was measured with 2048 time domain points sampled in the direct dimension (F3), 32 time domain points in the indirect ¹H dimension (F2) and 16 time domain points in the indirect $^{15}\!N$ dimension (F1), while the spectral widths were set to 7.0 ppm for the $^1\!H$ dimensions and 6.6 ppm for the 15N dimension. The low spectral width set for 15N folded the spectrum in this dimension, allowing the peaks to be sufficiently resolved with the limited number of indirect time domain points measured. Resolution in F2 and F1 was improved via one order of forward linear prediction. Zero filling was performed until a 2048×256×256 matrix was obtained, which was Fourier transformed using squared cosine bell window functions and afterwards baseline corrected with 5th degree polynomials in each dimension.

All pseudodesmin A samples in chloroform, except for the titration experiments, had a layer of water on top to reduce evaporation over time (Experimental Liquid Sealing, ELISE)^[24]. The concentrations in the chloroform samples listed in Table 1 were determined with ERETIC (Electronic Reference to assess in vivo Concentration)^[25] using samples of menthol in chloroform as a reference.

Translational diffusion measurements experiments were performed with NMR using convection compensated sequences; either the standard Bruker double stimulated echo with bipolar gradients and Longitudinal Eddy current Delay (LED)^[26] or a double stimulated echo with monopolar gradients with an extended phase cycle^[27]. The diffusion encoding/decoding gradients were half sine bell shaped and were varied linearly between 2% and 95% of their maximum output over 32 increments. The duration of these gradients and the diffusion delay time were chosen so that at the highest gradient strength increment the intensity of the signals of interest was decreased to less than 10% of the lowest gradient strength and fitting the data to the Stejskal-Tanner equation appropriate for these pulse sequences^[26] and corrected for the non-rectangular gradient shapes. 95% error bars were obtained using a Monte Carlo procedure with 500 simulations^[28].

¹H, ¹³C and ¹⁵N chemical shift perturbations were obtained during a second solvent titration experiment performed at 283.0 K and at 700.13 MHz from sensitivity improved ¹H-¹³C and ¹H-¹⁵N gHSQC spectra. Standard pulse sequences from the Bruker library were used. The ¹H-¹³C gHSQC spectra were recorded with a spectral width of 10 ppm and 2048 time domain points in the direct ¹H dimension, while for the indirect ¹³C dimension a spectral width of 90 ppm and 512 time domain points were used. The ¹H-¹⁵N gHSQC spectra were set up using a spectral width of 5 ppm and 1024 time domain points for the ¹H dimension and a spectral width of 32 ppm and 256 or 128 time domain points for the ¹⁵N dimension. The resolution of both spectra was improved through forward linear prediction. A zero-filling was performed until a 2048×2048 or 1024×1024 real data matrix was obtained for respectively the 1H-13C and ¹H-¹⁵N gHSQCs. Before Fourier transformation, all spectra were multiplied with a squared cosine bell window function in both dimensions. Despite the lower sample temperature, solvent evaporation over time was inevitable due to the long measurement time required at natural abundance. Therefore the translational diffusion coefficient was used as a quantitative descriptor of the degree of self-association. To obtain a relevant chemical shift difference, the absolute value of the slope obtained through linear regression between chemical shift and diffusion coefficient (ranging between 178.5 $\mu m^2 s^{\text{-1}}$ and 436.3 $\mu m^2 s^{\text{-1}})$ was multiplied with the difference in diffusion coefficient over the entire titration experiment. The ¹H/¹⁵N average chemical shift was calculated^[29] as $\delta_{av} = \delta({}^{1}H) + \delta({}^{15}N)/5$, while the ${}^{1}H/{}^{13}C$ average was calculated as $\delta_{av} = \delta(^1 H) + \, \delta(^{13} C)/2$ (supporting information).

For the detection of intermolecular rOe contacts, a 40 ms mixing time 2D ¹H-¹H off-resonance ROESY spectrum^[30] in a ca 20 mM pseudodesmin A solution in chloroform was performed at 283.0 K at 700.13 MHz.

Acetonitrile solution structure determination: Off-resonance ROESY^[30] spectra were recorded at 500.13 MHz with mixing times varying between 75 ms and 400 ms to establish the linearity of the rOe build-up. A value of 200 ms was found to be the optimal mixing time for collecting distance restraints in acetonitrile. A 200 ms off-resonance ROESY experiment at 700.13 MHz performed in a 2 mM solution in [D₃]acetonitrile was subsequently recorded. All relevant cross peaks were integrated using the CCPNMR (v1.0 release 12) software^[31] and corrected for multiplicity^[16]. The conversion of rOe intensities into distances was calibrated against the average of the integrals of the rOe intensities between the β methylene protons of Leu5, Leu7, Ser8 and Ile9 and assuming a fixed distance of 1.74 Å^[16]. All distances were increased by 10% prior to the addition of pseudo atom corrections for groups of equivalent or non-stereo assigned protons^[16]. In total, 127 distance restraints were obtained in this way. These were enforced using a flat-bottomed harmonic potential with a force constant of 10 kcal-mol⁻¹Å⁻² and a maximum energy penalty of 1000 kcal-mol⁻¹. In addition, all

peptide bonds were restrained to their trans configuration by adding restraints to the ω torsion angle with a force constant of 100 kcal·mol⁻¹rad⁻² whenever the deviation from the ideal 180° exceeded 5°. These restraints (supporting information) were used as input for restrained molecular modelling using the cff91 force field^[32] within DISCOVER 2.98 (Accelrys, San Diego, CA, USA) running on an IBM Intellistation ZPro under Redhat Linux WS4. First, a set of 100 starting structures was obtained by sampling every 5 ps of the last 500 ps of a 550 ps unrestrained molecular dynamics (MD) simulation at 1000 K. Each was subjected to 100 steps of steepest descents energy minimization (EM) prior to restrained molecular dynamics (rMD) simulation using a simulated annealing protocol. Starting at 1000 K, the interproton distance restraints were gradually enforced on each structure in the initial set while cooling down the system in 150 K steps to 300 K with 1 ps rMD simulations at each temperature. The progression of the weighting constants for the experimental restraints was 0.1, 0.3, 0.7, 0.9 and 1.0. At 300 K an additional 3 ps rMD was performed. The energy of the conformation thus obtained was subsequently optimized by 100 steps of steepest descents restrained energy minimization (rEM) followed by conjugate gradients rEM until the maximum gradient of the cff91 energy was smaller than 0.001 kcal·mol⁻¹Å⁻¹. A subset of 40 structures with minimal energy was selected to represent the conformation of pseudodesmin A. The structure was confronted against ¹H-²H amide exchange rates for validation. These were obtained by adding 61.1 μl of D_2O to a ca 8 mM solution of pseudodesmin A in 550 µl [D3]acetonitrile at 298 K and monitoring the signal intensities of all exchangeable proton resonances over a 6 day period.

Acknowledgements

The Fund for Scientific Research – Flanders (FWO-Vlaanderen) is gratefully acknowledged for a PhD fellowship to D.S. and various equipment grants (G.0365.03, G.0064.07) to J.C.M. P.M.S.H. acknowledges the IWT Flanders for a PhD SBO-grant. The 700 MHz equipment of the Interuniversitary NMR Facility was financed by Ghent University, the Free University of Brussels (VUB) and the University of Antwerp via the 'Zware Apparatuur' Incentive of the Flemish Government. This research is supported by the NMR Scientific Research Community of the FWO.

- O. Nybroe and J. Sorensen in *Production of cyclic lipopeptides by fluorescent pseudomonads, Vol. 3* (Ed. J.-L. Ramos), Kluwer Academic/Plenum Publishers, New York, **2004**, pp. 147-172.
- [2] J. M. Raaijmakers, I. de Bruijn and M. J. D. de Kock, Mol. Plant-Microbe Interact. 2006, 19, 699-710.
- [3] D. Sinnaeve, C. Michaux, J. Van hemel, J. Vandenkerckhove, E. Peys, F. A. M. Borremans, B. Sas, J. Wouters and J. C. Martins, *Tetrahedron* 2009, 65, 4173– 4181.
- [4] M. Coraiola, P. Lo Cantore, S. Lazzaroni, A. Evidente, N. S. Lacobellis and M. Dalla Serra, *Biochim. Biophys. Acta, Biomembr.* 2006, 1758, 1713-1722.
- [5] M. L. Hutchison, M. A. Tester and D. C. Gross, *Mol. Plant-Microbe Interact.* 1995, 8, 610-620.
- [6] S. R. Dennison, J. Wallace, F. Harris and D. A. Phoenix, *Protein Pept. Lett.* 2005, 12, 31-39.
- [7] K. V. R. Reddy, R. D. Yedery and C. Aranha, Int. J. Antimicrob. Agents 2004, 24, 536-547.
- [8] R. J. Mortishire-Smith, J. C. Nutkins, L. C. Packman, C. L. Brodey, P. B. Rainey, K. Johnstone and D. H. Williams, *Tetrahedron* 1991, 47, 3645-3654.

- [9] P. Lo Cantore, S. Lazzaroni, M. Coraiola, M. Dalla Serra, C. Cafarchia, A. Evidente and N. S. Iacobellis, *Mol. Plant-Microbe Interact.* 2006, 19, 1113-1120.
- [10] G. S. Wang, Curr. Org. Chem. 2006, 10, 569-581.
- [11] Handbook of Chemistry and Physics 90th Edition (Ed. D. R. Lide), CRC Press, Boca Raton, FL., 2009-2010.
- [12] F. S. Han, R. J. Mortishire-Smith, P. B. Rainey and D. H. Williams, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1992, 48, 1965-1968.
- [13] S. G. Hyberts, M. S. Goldberg, T. F. Havel and G. Wagner, *Protein Sci.* 1992, 1, 736-751.
- [14] G. W. Vuister and A. Bax, J. Am. Chem. Soc. 1993, 115, 7772-7777.
- [15] A. Demarco, M. Llinas and K. Wuthrich, Biopolymers 1978, 17, 617-636.
- [16] D. Neuhaus and M. P. Williamson, *The Nuclear Overhauser Effect in Structural and Conformational Analysis 2nd Edition*, John Wiley and Sons Ltd, New York, 2000, p. 656.
- [17] C. A. Hunter, Angew. Chem., Int. Ed. 2004, 43, 5310-5324.
- [18] M. S. C. Pedras, N. Ismail, J. W. Quail and S. M. Boyetchko, *Phytochemistry* 2003, 62, 1105-1114.
- [19] D. Sengupta, R. N. Behera, J. C. Smith and G. M. Ullmann, *Structure* 2005, 13, 849-855.
- [20] J. W. Quail, N. Ismail, M. S. C. Pedras and S. M. Boyetchko, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2002, 58, o268-o271.
- [21] D. Sorensen, T. H. Nielsen, C. Christophersen, J. Sorensen and M. Gajhede, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 1123-1124.
- [22] A. Henriksen, U. Anthoni, T. H. Nielsen, J. Sorensen, C. Christophersen and M. Gajhede, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000, 56, 113-115.
- [23] T. Facke and S. Berger, J. Magn. Reson. Ser. A 1995, 113, 114-116.
- [24] J. M. Wieruszeski, I. Landrieu, X. Hanoulle and G. Lippens, J. Magn. Reson. 2006, 181, 199-202.
- [25] S. Akoka, L. Barantin and M. Trierweiler, Ana.l Chem. 1999, 71, 2554-2557.
- [26] A. Jerschow and N. Muller, J. Magn. Reson. 1997, 125, 372-375.
- [27] M. A. Connell, P. J. Bowyer, P. A. Bone, A. L. Davis, A. G. Swanson, M. Nilsson and G. A. Morris, *J. Magn. Reson.* 2009, 198, 121-131.
- [28] J. S. Alper and R. I. Gelb, J. Phys. Chem. 1990, 94, 4747-4751.
- [29] B. Meyer and T. Peters, Angew. Chem., Int. Ed. 2003, 42, 864-890.
- [30] H. Desvaux and M. Goldman, J. Magn. Reson. Ser. B 1996, 110, 198-201.
- [31] W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon, P. Llinas, E. L. Ulrich, J. L. Markley, J. Ionides and E. D. Laue, *Proteins: Struct., Funct., Bioinf.* 2005, 59, 687-696.
- [32] J. R. Maple, U. Dinur and A. T. Hagler, Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 5350-5354.

Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

Entry for the Table of Contents (Please choose one layout only)

Layout 1:

Self-assembling lipodepsipetide

Davy Sinnaeve, Pieter M. S. Hendrickx, Johan Van hemel, Eric Peys, Bruno Kieffer, José C. Martins Page – Page

The solution structure and selfassociation properties of the cyclic lipodepsipeptide pseudodesmin A support its pore forming potential

The recently isolated pseudodesmin A forms large supramolecular structures in apolar organic solvents, reminiscent of the ability to form hydrophilic pores in cellular membranes. This is demonstrated by NMR translational diffusion measurements. A model for the supramolecular structure is proposed based on the monomer NMR solution structure and qualitative interpretation of intermolecular contacts.

The solution structure and self-association properties of the cyclic lipodepsipeptide pseudodesmin A support its pore forming potential

Davy Sinnaeve^{*[a]}, Pieter M. S. Hendrickx^[a], Johan Van hemel^[b], Bruno Kieffer^[c] and José C. Martins^{*[a]}

- [a] Davy Sinnaeve, Dr. Pieter M. S. Hendrickx, Prof. Dr. José C. Martins NMR and Structure Analysis Unit Department of Organic Chemistry Ghent University Krijgslaan 281 S4, B-9000 Gent (Belgium) Fax: +32 (0)9 264 4972 E-mail: Davy.Sinnaeve@UGent.be, Jose.Martins@UGent.be
- [b] Dr. Johan Van hemel, Dr. Eric Peys Kemin Pharma Atealaan 4H, B-2200 Herentals (Belgium)
- [c] Prof. Dr. Bruno Kieffer
 IGBMC
 Biomolecular NMR group
 1 rue Laurent Fries BP 10142, 67404 Illkirch CEDEX (France)

Supporting information

Contents:

- 1D ¹H NMR spectra of pseudodesmin A in chloroform and DMSO (p. 3)
- ¹H, ¹³C and ¹⁵N NMR assignments of pseudodesmin A in DMSO and chloroform solution (p.6)
- 2D ¹H-¹H NOESY spectra 200 ms mixing time in acetonitrile and chloroform and 2D ¹H-¹H ROESY spectrum 40 ms mixing time in chloroform (p. 12)
- Additional data from solvent titrations (p. 14)
- Stereo image of the solution structure (p. 21)
- Solution structure statistics and restraint file (p. 22)
- ${}^{1}\text{H}/{}^{2}\text{H}$ exchange curves in acetonitrile (p. 26)
- Magnetic field dependence of the pseudodesmin A resonance line widths in DMSO solution (p. 27)
- Temperature dependence of the pseudodesmin A resonance line widths and temperature coefficients of amide ¹H resonances in DMSO solution (p. 28)

Additional files:

pseudodesminA_solstruc.pdb: PDB-file containing the lowest energy solution structure

1D ¹H NMR spectra of pseudodesmin A in chloroform and DMSO

- p. 4: ca 20 mM solution in chloroform-d, 25°C, 700.13 MHz
 p. 5: solution in DMSO-d6 solution, 298.0 K, 500.13 MHz

¹H, ¹³C and ¹⁵N NMR assignments of pseudodesmin A in DMSO and chloroform solution

The spectra measured and strategy employed for the ¹H, ¹³C and ¹⁵N assignment of pseudodesmin A in DMSO solution were similar as in acetonitrile^[1]. The ¹H and ¹³C assignment was performed on a Bruker DRX spectrometer operating at a respective ¹H and ¹³C frequency of 500.13 MHz and 125.76 MHz equipped with a ¹H, ¹³C, ¹⁵N TXI-Z probe. The temperature was set at 298.0 K throughout. The ¹⁵N assignment was performed on a Bruker Avance II spectrometer operating at a respective ¹H, ¹³C and ¹⁵N frequency of 700.13 MHz and 176.05 MHz and 70.94 MHz also equipped with a ¹H, ¹³C, ¹⁵N TXI-Z probe. The temperature was set at 323.0 K to increase signal to noise by sharpening up the H^N resonances.

Assignments in chloroform (ca 20 mM) were performed similarly at 700.13 MHz at 25°C throughout.

In all cases, the ¹H and ¹³C chemical shifts are referenced against internal TMS, while the ¹⁵N chemical shift was referenced indirectly to MeNO₂ according to IUPAC guidelines^[2].

D. Sinnaeve, C. Michaux, J. Van hemel, J. Vandenkerckhove, E. Peys, F. A. M. Borremans, B. Sas, J. Wouters and J. C. Martins, *Tetrahedron* 2009, 65, 4173–4181.
 R. K. Harris, E. D. Becker, S. M. C. De Menezes, R. Goodfellow and P. Granger, *Pure and Applied Chemistry* 2001, 73, 1795-1818.

				-	BIGGD VIIII	ed for more	IIIIIsanonna	VCINICI III A	I II NINING					
		¹ H & [ppm]	¹³ C δ [ppm]	¹⁵ N & [ppm]			¹ H δ [ppm]	¹³ C & [ppm]	¹⁵ N & [ppm]			¹ H δ [ppm]	¹³ C δ [ppm]	¹⁵ N δ [ppm]
HDA					Thr3					Leu7				
	CO 1		172.08			NH 26	8.29		-267.23		NH 49	7.75		-260.71
	$CH_2\alpha$ 2	2.27	43.30			CHa 27	4.25	58.28			CH $lpha$ 50	4.24	50.98	
	CHB 3	3.85	67.41			CO 28		ND			CO 51		ND	
	$CH_2\gamma$ 4	1.36	37.03			СНВ 29	5.16	68.65			$CH_2\beta$ 52	1.60	39.35	
	CH28 5	1.24 / 1.36	24.88			$CH_3\gamma$ 30	1.18	17.27			СНү 53	1.70	23.91	
	СН ₂ 6	1.23	28.79		Val4						$CH_3\delta$ 54	0.82	20.80	
	$CH_2 \zeta$ 7	1.23	28.79			NH 31	7.86		-262.11		CH ₃ 8 55	06.0	23.08	
	CH ₂ η 8	1.23	31.11			CHa 32	3.81	60.27		Ser8				
	$CH_2\Theta$ 9	1.26	21.96			CO 33		170.66			NH 56	7.67		-270.52
	CH ₃ 1 10	0.85	13.80			CHβ 34	2.06	29.85			CH α 57	4.29	56.87	
	OH 11	4.59				$CH_3\gamma$ 35	0.81	19.06			CO 58		170.21	
Leu1						$CH_3\gamma$ 36	0.81	18.47			$CH_2\beta$ 59	3.59 / 3.72	61.60	
	NH 12	8.31		-259.59	Leu5						0HY 60	4.83		
	CH \propto 13	4.14	51.81			NH 37	7.39		-265.50	Ile9				
	CO 14		173.41			CHox 38	4.28	51.89			NH 61	7.26		-268.77
	$CH_2\beta$ 15	1.49	39.82			CO 39		ND			CH $lpha$ 62	QN	ND	
	CH_{γ} 16	1.59	24.01			$CH_2\beta$ 40	1.43 / 1.67	39.77			CO 63		168.88	
	CH38 17	0.86	21.89			CH_{V} 41	1.70	23.91			СНВ 64	1.62	35.60	
	$CH_3\delta$ 18	0.90	22.57			CH ₃ 5 42	0.84	20.53			$CH_{3}\gamma$ 65	0.69	14.84	
Gln2						CH ₃ 5 43	0.89	22.94			$CH_2\gamma$ 66	0.90 / 1.27	24.55	
	NH 19	8.65		-253.24	Ser6						CH ₃ 8 67	0.75	11.24	
	CH \propto 20	4.01	54.05			NH 44	8.19		-269.89					
	CO 21		172.95			CH \propto 45	4.07	56.70						
	$CH_2\beta$ 22	1.83 / 1.90	26.61			CO 46		170.04						
	$CH_2\gamma$ 23	2.16	31.18			$CH_2\beta$ 47	3.68 / 3.77	61.27						
	CO5 24		173.27			0Нү 48	5.03							
	$\rm NH_2$ 25	6.79 / 7.26		-272.15										
* ¹ H and ¹³ C as ND = not deter	signments] mined	performed at	500 MHz at	298.0 K, ¹⁵ 1	N assignment	ts performed	at 700 MHz	at 323.0 K						

2D ¹H-¹H NOESY spectra 200 ms mixing time in acetonitrile and chloroform and 2D ¹H-¹H ROESY spectrum 40 ms mixing time in chloroform

A comparison between the 2D ¹H-¹H NOESY spectra (mixing time 200 ms, measured at 500 MHz) of pseudodesmin A in respectively acetonitrile and chloroform solution illustrates the size of the supramolecular complexes that can be formed in chloroform. In acetonitrile, the product behaves as a small molecule, with clear positive nOe correlations between resonances. In a ca 25mM chloroform solution however, the nOe correlations become strongly negative while spin diffusion is abundantly present, effectively creating a cross-peak between almost every pair of resonances. This effect is due to the strong dependence of the nOe with the rotational correlation time of molecules in solution.

2D ¹H-¹H ROESY spectra are much less prone to spin diffusion, while any relayed rOe correlations that do get through will experience an inversion of sign and thus be easily recognized. For this reason, a 2D ROESY spectrum (mixing time 40 ms, measured at 700 MHz) of a ca 20 mM pseudodesmin A solution in chloroform was recorded for the detection of intermolecular contacts.

Additional data from solvent titrations

	pseudode	smin A	TM	S
V% CD ₃ CN	$D \left[\mu m^2/s\right]$	error ^[a]	$D \left[\mu m^2/s\right]$	error ^[a]
0.0	262.3	1.8	1949.5	16.9
1.0	289.2	2.4	1978.7	13.6
2.0	316.5	1.7	1965.1	15.2
3.0	344.5	2.1	1974.4	12.6
4.0	376.8	2.0	1974.0	16.9
5.0	398.2	1.6	1967.8	10.2
6.0	420.3	2.8	1967.2	10.9
7.0	435.7	2.2	1943.2	11.6
8.0	450.8	2.9	1949.7	14.9
9.0	456.8	2.6	1931.2	14.9
10.0	463.0	1.8	1933.5	14.6
11.0	470.1	2.0	1949.3	12.2
12.0	475.6	2.2	1954.3	9.6
13.0	484.7	2.8	1963.6	16.1

<u>Tabulated data for first titration performed to assess the effect of solvent polarity (see Figure 3 in the main paper)</u>

[a] 95% error calculated as 1.96 times the standard deviation of 500 diffusion coefficients obtained using a Monte Carlo procedure

Tabulated data for see	cond titration	performed to	assess the ¹	H, ${}^{13}C$ and	¹⁵ N chemical	l shift changes	(see
Figure 6 in the main p	paper)	*					

point		1	2	3	4	5	6	7	8	9	10	11				
					Diffusio	n coefficie	nts [µm²/s]						ΔD			
D _{pseudodesmin A}		178.5	202.7	222.1	239.6	265.4	299.3	327.9	348.7	373.4	405.7	436.3	257.8			
error ^[a]		0.7	1.0	1.4	0.8	1.8	1.6	1.2	1.5	1.7	2.0	2.1				
D _{TMS}		1880.8	1885.5	1862.6	1862.6	1861.3	1857.2	1849.1	1843.4	1859.3	1825.5	1858.9				
error ^[a]		4.9	10.3	2.9	5.1	2.5	4.2	4.3	3.5	13.0	3.2	3.1				
					$^{1}\text{H}/^{13}\text{C}$	Chemical sl	nifts [ppm]						Slope	R ²	$ Slope \times \Delta D$	average ^[c]
Leu1 CHa	'H	3.84	3.83	3.82	3.81	3.80	3.79	3.78	3.77	3.77	3.77	3.77	-2.95E-04	-0.96	0.08	0.23
	¹³ C	52.74	52.80	52.82	52.84	52.90	52.94	52.96	52.98	53.02	53.04	53.05	1.21E-03	0.99	0.31	
Leu1 $CH_2\beta($	1+2) [•] H	1.77	1.77	1.77	1.77	1.77	1.76	1.76	1.75	1.75	1.74	1.73	-1.54E-04	-0.99	0.04	0.13
	¹³ C	37.88	37.90	37.89	37.90	37.91	37.93	37.94	37.96	37.97	38.02	38.08	6.65E-04	0.94	0.17	
Leu1 CHy	'H	1.72	1.72	1.71	1.71	1.70	1.69	1.68	1.68	1.67	1.67	1.66	-2.52E-04	-1.00	0.06	0.08
	•••C	24.61	24.62	24.61	24.61	24.61	24.62	24.61	24.62	24.62	24.64	24.66	1.19E-04	0.74	0.03	
Leu1 CH ₃ δ1	'H	0.94	0.93	0.93	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.92	-8.33E-05	-0.98	0.02	0.03
	•••C	21.53	21.55	21.54	21.53	21.53	21.54	21.53	21.53	21.54	21.53	21.57	4.98E-05	0.38	0.01	
Leu1 CH ₃ δ2	'H	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	-5.60E-06	-0.53	0.00	0.09
	C	23.26	23.23	23.20	23.18	23.18	23.18	23.14	23.12	23.12	23.08	23.08	-6.64E-04	-0.97	0.17	
Gln2 CHa	'H	3.99	3.98	3.98	3.98	3.97	3.97	3.96	3.96	3.96	3.95	3.94	-1.73E-04	-1.00	0.04	0.11
	•••C	56.61	56.63	56.64	56.60	56.63	56.64	56.65	56.67	56.67	56.72	56.77	5.13E-04	0.87	0.13	
Gln2 $CH_2\beta$	'H	2.07	2.08	2.07	2.07	2.07	2.07	2.07	2.07	2.06	2.06	2.05	-9.00E-05	-0.93	0.02	0.23
	•••C	25.65	25.56	25.50	25.46	25.39	25.32	25.26	25.24	25.19	25.21	25.29	-1.63E-03	-0.90	0.42	
Gln2 CH ₂ γ	'H	2.41	2.42	2.42	2.42	2.43	2.43	2.43	2.43	2.43	2.43	2.42	4.77E-05	0.54	0.01	0.11
	13C	31.21	31.26	31.27	31.25	31.29	31.32	31.32	31.36	31.36	31.40	31.44	7.78E-04	0.98	0.20	
Thr3 CHa	'H	3.92	3.94	3.96	3.97	3.99	4.01	4.02	4.03	4.04	4.03	4.02	4.36E-04	0.92	0.11	0.49
	••C	61.38	61.24	61.13	61.08	60.95	60.83	60.74	60.70	60.64	60.62	60.67	-2.95E-03	-0.95	0.76	
Thr3 CHβ	·H	5.32	5.31	5.31	5.30	5.30	5.29	5.28	5.27	5.27	5.27	5.26	-2.35E-04	-0.99	0.06	0.17
	11	69.71	69.69	69.66	69.65	69.64	69.61	69.57	69.56	69.52	69.51	69.52	-8.24E-04	-0.98	0.21	
Thr3 CH ₃ γ	H Ba	1.36	1.35	1.35	1.34	1.34	1.34	1.33	1.33	1.32	1.32	1.31	-1.56E-04	-0.99	0.04	0.21
	C	18.38	18.29	18.23	18.19	18.19	18.14	18.08	18.04	18.03	18.00	18.05	-1.35E-03	-0.94	0.35	
Val4 CHa	'H	3.47	3.47	3.48	3.47	3.47	3.47	3.48	3.47	3.48	3.48	3.47	1.34E-05	0.56	0.00	0.21
	1	64.84	64.78	64.72	64.69	64.63	64.58	64.52	64.51	64.46	64.45	64.46	-1.57E-03	-0.97	0.41	
Val4 CHβ	H	2.22	2.21	2.21	2.20	2.20	2.19	2.18	2.18	2.17	2.17	2.17	-1.99E-04	-0.98	0.05	0.05
	11	29.13	29.14	29.14	29.12	29.13	29.13	29.12	29.13	29.13	29.13	29.15	2.66E-05	0.28	0.01	0.02
val4 CH ₃ γI	H 13-	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.96	-1.35E-05	-0.48	0.00	0.02
	C	19.24	19.23	19.22	19.22	19.22	19.24	19.25	19.23	19.25	19.25	19.28	1.44E-04	0.70	0.04	
val4 CH ₃ γ2	. H	0.99	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.97	0.97	0.97	-6.79E-05	-0.97	0.02	0.11
	C	20.44	20.47	20.47	20.48	20.48	20.51	20.54	20.54	20.58	20.58	20.64	7.20E-04	0.98	0.19	

Leu5	СНα	$^{1}\mathrm{H}$	4.15	4.15	4.14	4.15	4.14	4.14	4.14	4.13	4.13	4.12	4.10	-1.45E-04	-0.86	0.04	0.13
		^{13}C	54.79	54.73	54.68	54.65	54.62	54.58	54.55	54.55	54.53	54.56	54.64	-7.18E-04	-0.76	0.19	
Leu5	$CH_2\beta(1+2)$	^{1}H	1.65	1.65	1.65	1.65	1.64	1.64	1.64	1.64	1.64	1.63	1.62	-9.25E-05	-0.98	0.02	0.16
		¹³ C	39.63	39.66	39.65	39.67	39.71	39.75	39.77	39.80	39.82	39.86	39.91	1.08E-03	0.99	0.28	
Leu5	CHγ	1 H	1.80	1.80	1.80	1.80	1.80	1.79	1.79	1.79	1.79	1.79	1.78	-7.19E-05	-0.99	0.02	0.06
		¹³ C	24.94	24.93	24.90	24.89	24.90	24.90	24.87	24.87	24.86	24.86	24.87	-2.91E-04	-0.90	0.08	
Leu5	$CH_3\delta 1$	¹ H	0.90	0.89	0.89	0.89	0.89	0.88	0.88	0.88	0.87	0.87	0.87	-9.51E-05	-0.98	0.02	0.06
		¹³ C	23.00	23.02	23.02	23.02	23.02	23.05	23.06	23.05	23.07	23.07	23.07	2.81E-04	0.97	0.07	
Leu5	$CH_3\delta 2$	'Η	0.92	0.92	0.92	0.92	0.92	0.92	0.91	0.91	0.91	0.91	0.90	-7.45E-05	-0.99	0.02	0.05
		¹³ C	21.22	21.19	21.17	21.15	21.15	21.16	21.13	21.11	21.14	21.11	21.16	-2.76E-04	-0.71	0.07	
Ser6	СНα	¹ H	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.60	4.60	4.57	4.54	-2.10E-04	-0.77	0.05	0.07
		¹³ C	54.86	54.82	54.80	54.78	54.76	54.76	54.75	54.77	54.77	54.83	54.94	1.28E-04	0.19	0.03	
Ser6	$CH_2\beta 1$	·H	3.90	3.89	3.89	3.87	3.86	3.85	3.84	3.83	3.83	3.83	3.83	-3.13E-04	-0.96	0.08	0.26
		¹⁵ C	63.73	63.78	63.82	63.84	63.91	63.95	63.98	64.01	64.04	64.06	64.09	1.40E-03	0.99	0.36	
Ser6	$CH_2\beta 2$	·H	4.26	4.27	4.28	4.28	4.29	4.30	4.31	4.32	4.32	4.32	4.31	2.23E-04	0.91	0.06	0.24
		¹⁵ C	63.70	63.79	63.81	63.85	63.90	63.96	63.98	64.01	64.04	64.07	64.09	1.45E-03	0.98	0.37	
Leu7	СНα	'H	4.15	4.17	4.18	4.18	4.19	4.20	4.21	4.21	4.21	4.21	4.20	2.16E-04	0.89	0.06	0.60
		¹ C	55.86	55.70	55.58	55.52	55.40	55.25	55.13	55.05	54.95	54.84	54.75	-4.24E-03	-1.00	1.09	
Leu7	$CH_2\beta 1$	H 13 m	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.65	1.65	-2.41E-05	-0.62	0.01	0.15
		¹ C	41.04	41.09	41.12	41.12	41.17	41.21	41.23	41.26	41.27	41.31	41.33	1.09E-03	0.99	0.28	
Leu7	$CH_2\beta 2$	'H	2.06	2.04	2.03	2.03	2.01	1.99	1.98	1.97	1.96	1.95	1.94	-4.70E-04	-0.99	0.12	0.26
		"C	41.06	41.11	41.12	41.14	41.18	41.21	41.23	41.27	41.28	41.31	41.34	1.05E-03	1.00	0.27	
Leu7	СНү	'H	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.02	2.02	2.02	2.01	-5.89E-05	-0.76	0.02	0.03
	GT 21	1 ₁₁	24.68	24.67	24.66	24.66	24.66	24.66	24.65	24.66	24.67	24.69	24.73	1.26E-04	0.49	0.03	
Leu7	CH301	П		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.94	-3.04E-05	-0.81	0.01	0.09
	GT 53	1 ₁₁		21.49	21.45	21.44	21.44	21.42	21.39	21.36	21.36	21.34	21.33	-6.57E-04	-0.98	0.17	
Leu7	CH ₃ 62	П	1.04	1.04	1.04	1.04	1.04	1.04	1.03	1.03	1.03	1.03	1.02	-5.81E-05	-0.96	0.01	0.13
a 0		1 ₁ 1	22.90	22.93	22.93	22.95	22.95	22.99	23.02	23.04	23.07	23.08	23.15	9.13E-04	0.98	0.24	0.51
Ser8	СНα	13C	4.89	4.88	4.86	4.85	4.83	4.82	4.80	4.79	4.77	4.74	4.69	-7.16E-04	-0.99	0.18	0.51
Sare	CH 81	¹ H	2 81	2.84	33.96	35.94	2 00	33./3 2.04	2 07	30.59	35.54	35.50	35.54	-2.56E-05	-0.98	0.00	0.47
Sera	Cn ₂ p1	13 _C	5.61	5.64	5.80	5.87	5.90	5.94	5.97	3.98	4.01	4.02	4.02	8.80E-04	0.98	0.23	0.47
C0	CH 92	¹ н	02.15	62.18	62.19	2.02	62.27	2.89	02.38	62.45	62.49	02.57	02.01	1.88E-03	1.00	0.48	0.47
Sera	Cn ₂ p2	13 _C	5.98	5.90	3.95	5.95	5.90	5.88	5.65	3.65	5.81	3.78	3.70	-8.79E-04	-1.00	0.23	0.47
11-0	CHa	- С 1н	02.10	62.20	62.20	62.21	62.27	02.35	62.39	62.46	62.49	62.57	62.62	1.80E-03	0.99	0.48	0.16
1109	Спи	¹³ C	4.01	56.92	4.00	4.01	4.01	4.01	4.01	4.01	4.01	4.00	4.00	-3.01E-03	-0.50	0.01	0.10
1100	CHR	¹ H	2 12	2 11	2 10	2 10	2.00	2.00	2.08	2.07	2.07	2.06	2.05	-1.10E-03	-0.99	0.30	0.20
nc y	Chip	¹³ C	35 59	35.62	35.63	35.62	35.65	35.68	35.71	35.74	35.76	35.81	35.88	1.04E-03	0.98	0.07	0.20
Ile9	CH ₂ v11	¹ H	1.03	1.03	1.03	1.03	1.03	1.04	1.04	1.04	1.04	1.04	1.03	3 54E-05	0.49	0.01	0.06
	27	^{13}C	24 35	24.36	24.36	24 34	24 37	24 39	24.37	24 39	24 39	24.43	24.45	3 72E-04	0.91	0.10	
Ile9	CH ₂ y12	¹ H	1.18	1.18	1.17	1.17	1.17	1.17	1.16	1.16	1.16	1.16	1.16	-8.80E-05	-0.96	0.02	0.07
	27	¹³ C	24.36	24.37	24.36	24.35	24.37	24.38	24.38	24.39	24.40	24.43	24.45	3.43E-04	0.92	0.09	
Ile9	CH ₂ y2	1 H	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.89	0.89	0.88	-6.90E-05	-0.90	0.02	0.02
	- 51	¹³ C	15.96	15.96	15.94	15.94	15.94	15.95	15.95	15.93	15.95	15.94	15.96	3.85E-06	0.03	0.00	
Ile9	CH₃δ	^{1}H	0.91	0.91	0.91	0.91	0.91	0.90	0.90	0.90	0.90	0.89	0.89	-8.92E-05	-0.99	0.02	0.06
	5	¹³ C	11.94	11.94	11.93	11.93	11.93	11.95	11.96	11.96	11.98	11.97	12.02	2.85E-04	0.87	0.07	
HDA	CH ₂ a1	$^{1}\mathrm{H}$	2.51	2.51	2.46	2.46	2.43	2.42	2.40	2.39	2.38	2.36	2.35	-6.50E-04	-0.98	0.17	0.31
	-	¹³ C	44.45	44.43	44.39	44.40	44.37	44.34	44.29	44.27	44.25	44.20	44.17	-1.07E-03	-0.99	0.28	
HDA	$CH_2\alpha 2$	1 H	2.51	2.51	2.50	2.50	2.50	2.49	2.48	2.48	2.47	2.47	2.46	-2.16E-04	-1.00	0.06	0.19
		¹³ C	44.45	44.43	44.39	44.38	44.37	44.33	44.30	44.27	44.25	44.20	44.16	-1.07E-03	-1.00	0.28	
HDA	СНβ	1 H	3.95	3.95	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	4.71E-05	0.96	0.01	0.34
		¹³ C	69.58	69.45	69.37	69.31	69.23	69.14	69.06	69.04	68.98	68.94	68.93	-2.51E-03	-0.97	0.65	
HDA	$CH_2\gamma$	^{1}H	1.56	1.55	1.55	1.55	1.54	1.54	1.53	1.53	1.53	1.52	1.51	-1.53E-04	-1.00	0.04	0.13
		^{13}C	38.03	37.99	37.96	37.94	37.94	37.91	37.89	37.88	37.86	37.85	37.83	-7.02E-04	-0.98	0.18	
HDA	$CH_2\delta 1$	^{1}H	1.29	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.40E-05	0.74	0.00	0.21
		¹³ C	26.07	26.01	25.95	25.92	25.88	25.82	25.76	25.75	25.70	25.68	25.69	-1.56E-03	-0.97	0.40	
HDA	$CH_2\delta 2$	^{1}H	1.47	1.47	1.47	1.46	1.46	1.45	1.45	1.45	1.44	1.44	1.43	-1.52E-04	-1.00	0.04	0.24
		¹³ C	26.05	25.98	25.94	25.92	25.87	25.80	25.74	25.72	25.68	25.65	25.67	-1.59E-03	-0.98	0.41	
HDA	$CH_2\theta$	¹ H	1.27	1.27	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.29	1.29	5.29E-05	0.97	0.01	0.06
		¹³ C	22.66	22.65	22.64	22.64	22.67	22.66	22.66	22.69	22.68	22.71	22.76	3.50E-04	0.84	0.09	
HDA	CH ₃ ı	^{1}H	0.87	0.87	0.87	0.87	0.87	0.87	0.88	0.88	0.88	0.88	0.88	4.73E-05	0.99	0.01	0.03
		¹³ C	14.14	14.13	14.12	14.12	14.12	14.14	14.14	14.14	14.15	14.14	14.18	1.59E-04	0.72	0.04	
						$^{1}H/^{15}NC$	Themical sh	nifts [ppm]						Slope ^[b]	R ²	Slope ×∆D	average ^[c]
									~	0.05	7.06	7 89	7.86	-3.04E-03	-0.99	0.70	1.12
Leu1	NH	¹ H		8.54	8.47	8.41	8.31	8.19	8.11	8.05	7.90	1.07			0.77	0.78	1.12
Leu1	NH	¹ H ¹⁵ N		8.54 -253.08	8.47 -253.19	8.41 -253.35	8.31 -253.71	8.19 -253.95	8.11 -254.19	8.05 -254.27	-254.45	-254.49	-254.39	-6.46E-03	-0.95	1.67	
Leu1 Gln2	NH NH	¹ H ¹⁵ N ¹ H		8.54 -253.08	8.47 -253.19 8.73	8.41 -253.35 8.78	8.31 -253.71 8.87	8.19 -253.95 8.94	8.11 -254.19 9.00	8.05 -254.27 9.03	-254.45 9.08	-254.49 9.10	-254.39 9.08	-6.46E-03 1.74E-03	-0.95 0.95	0.78 1.67 0.45	0.75
Leu1 Gln2	NH NH	¹ H ¹⁵ N ¹ H ¹⁵ N		8.54 -253.08	8.47 -253.19 8.73 -263.58	8.41 -253.35 8.78 -263.53	8.31 -253.71 8.87 -263.31	8.19 -253.95 8.94 -263.14	8.11 -254.19 9.00 -263.00	8.05 -254.27 9.03 -262.90	-254.45 9.08 -262.73	-254.49 9.10 -262.55	-254.39 9.08 -262.32	-6.46E-03 1.74E-03 5.79E-03	-0.95 0.95 1.00	0.78 1.67 0.45 1.49	0.75
Leu1 Gln2 Thr3	NH NH NH	¹ H ¹⁵ N ¹ H ¹⁵ N ¹ H	8.12	8.54 -253.08 8.11	8.47 -253.19 8.73 -263.58 8.11	8.41 -253.35 8.78 -263.53 8.11	8.31 -253.71 8.87 -263.31 8.11	8.19 -253.95 8.94 -263.14 8.11	8.11 -254.19 9.00 -263.00 8.11	8.05 -254.27 9.03 -262.90 8.11	-254.45 9.08 -262.73 8.11	-254.49 9.10 -262.55 8.11	-254.39 9.08 -262.32 8.13	-6.46E-03 1.74E-03 5.79E-03 1.07E-05	-0.95 0.95 1.00 0.15	0.78 1.67 0.45 1.49 0.00	0.75
Leu1 Gln2 Thr3	NH NH NH	¹ H ¹⁵ N ¹ H ¹⁵ N ¹ H	8.12 -266.15	8.54 -253.08 8.11 -266.17	8.47 -253.19 8.73 -263.58 8.11 -266.13	8.41 -253.35 8.78 -263.53 8.11 -266.13	8.31 -253.71 8.87 -263.31 8.11 -266.09	8.19 -253.95 8.94 -263.14 8.11 -266.08	8.11 -254.19 9.00 -263.00 8.11 -266.07	8.05 -254.27 9.03 -262.90 8.11 -266.05	-254.45 9.08 -262.73 8.11 -266.04	-254.49 9.10 -262.55 8.11 -266.05	-254.39 9.08 -262.32 8.13 -266.04	-6.46E-03 1.74E-03 5.79E-03 1.07E-05 5.01E-04	-0.95 0.95 1.00 0.15 0.94	0.78 1.67 0.45 1.49 0.00 0.13	0.75
Leu1 Gln2 Thr3 Val4	NH NH NH NH	¹ H ¹⁵ N ¹ H ¹⁵ N ¹ H ¹⁵ N ¹ H	8.12 -266.15 7.78	8.54 -253.08 8.11 -266.17 7.72	8.47 -253.19 8.73 -263.58 8.11 -266.13 7.68	8.41 -253.35 8.78 -263.53 8.11 -266.13 7.64	8.31 -253.71 8.87 -263.31 8.11 -266.09 7.58	8.19 -253.95 8.94 -263.14 8.11 -266.08 7.52	8.11 -254.19 9.00 -263.00 8.11 -266.07 7.47	8.05 -254.27 9.03 -262.90 8.11 -266.05 7.44	-254.45 9.08 -262.73 8.11 -266.04 7.39	-254.49 9.10 -262.55 8.11 -266.05 7.36	-254.39 9.08 -262.32 8.13 -266.04 7.35	-6.46E-03 1.74E-03 5.79E-03 1.07E-05 5.01E-04 -1.74E-03	-0.95 0.95 1.00 0.15 0.94 -0.99	0.78 1.67 0.45 1.49 0.00 0.13 0.45	0.75 0.03 0.67
Leu1 Gln2 Thr3 Val4	NH NH NH	¹ H ¹⁵ N ¹ H ¹⁵ N ¹ H ¹⁵ N ¹ H ¹⁵ N ¹ H	8.12 -266.15 7.78 -258.56	8.54 -253.08 8.11 -266.17 7.72 -258.79	8.47 -253.19 8.73 -263.58 8.11 -266.13 7.68 -258.88	8.41 -253.35 8.78 -263.53 8.11 -266.13 7.64 -258.97	8.31 -253.71 8.87 -263.31 8.11 -266.09 7.58 -259.09	8.19 -253.95 8.94 -263.14 8.11 -266.08 7.52 -259.23	8.11 -254.19 9.00 -263.00 8.11 -266.07 7.47 -259.35	8.05 -254.27 9.03 -262.90 8.11 -266.05 7.44 -259.46	-254.45 9.08 -262.73 8.11 -266.04 7.39 -259.55	-254.49 9.10 -262.55 8.11 -266.05 7.36 -259.64	-254.39 9.08 -262.32 8.13 -266.04 7.35 -259.64	-6.46E-03 1.74E-03 5.79E-03 1.07E-05 5.01E-04 -1.74E-03 -4.20E-03	-0.95 0.95 1.00 0.15 0.94 -0.99 -0.98	0.78 1.67 0.45 1.49 0.00 0.13 0.45 1.08	0.75 0.03 0.67
Leu1 Gln2 Thr3 Val4 Leu5	NH NH NH NH	¹ H ¹⁵ N ¹ H ¹⁵ N ¹⁵ N ¹ H ¹⁵ N ¹⁵	8.12 -266.15 7.78 -258.56 8.08	8.54 -253.08 8.11 -266.17 7.72 -258.79 8.04	8.47 -253.19 8.73 -263.58 8.11 -266.13 7.68 -258.88 8.01	8.41 -253.35 8.78 -263.53 8.11 -266.13 7.64 -258.97 7.98	8.31 -253.71 8.87 -263.31 8.11 -266.09 7.58 -259.09 7.92	8.19 -253.95 8.94 -263.14 8.11 -266.08 7.52 -259.23 7.88	8.11 -254.19 9.00 -263.00 8.11 -266.07 7.47 -259.35 7.84	8.05 -254.27 9.03 -262.90 8.11 -266.05 7.44 -259.46 7.81	-254.45 9.08 -262.73 8.11 -266.04 7.39 -259.55 7.78	-254.49 9.10 -262.55 8.11 -266.05 7.36 -259.64 7.76	-254.39 9.08 -262.32 8.13 -266.04 7.35 -259.64 7.76	-6.46E-03 1.74E-03 5.79E-03 1.07E-05 5.01E-04 -1.74E-03 -4.20E-03 -1.33E-03	-0.95 0.95 1.00 0.15 0.94 -0.99 -0.98 -0.98	0.78 1.67 0.45 1.49 0.00 0.13 0.45 1.08 0.34	0.75 0.03 0.67 0.55

Ser6	NH	^{1}H	7.14	7.12	7.11	7.10	7.09	7.06	7.06	7.05	7.04	7.03	7.04	-4.07E-04	-0.96	0.10	0.13
		¹⁵ N	-276.52	-276.57	-276.53	-276.59	-276.58	-276.57	-276.56	-276.58	-276.64	-276.64	-276.69	-4.79E-04	-0.85	0.12	
Leu7	NH	1 H	7.70	7.64	7.60	7.58	7.52	7.46	7.42	7.39	7.35	7.31	7.28	-1.64E-03	-1.00	0.42	1.06
		¹⁵ N	-255.34	-255.76	-256.04	-256.22	-256.62	-256.98	-257.32	-257.59	-257.86	-258.24	-258.58	-1.23E-02	-1.00	3.17	
Ser8	NH	^{1}H	8.43	8.38	8.36	8.34	8.30	8.27	8.24	8.21	8.19	8.15	8.12	-1.14E-03	-1.00	0.30	0.76
		¹⁵ N	-272.52	-272.73	-272.88	-273.03	-273.30	-273.64	-273.88	-274.13	-274.35	-274.62	-274.71	-9.04E-03	-1.00	2.33	
Ile9	NH	1 H	6.48	6.50	6.50	6.49	6.49	6.50	6.50	6.51	6.51	6.52	6.54	1.61E-04	0.91	0.04	0.07
		¹⁵ N	-269.99	-270.07	-270.06	-270.15	-270.19	-270.17	-270.19	-270.19	-270.20	-270.19	-270.16	-6.09E-04	-0.76	0.16	

[a] 95% error calculated as 1.96 times the standard deviation of 500 diffusion coefficients obtained using a Monte Carlo procedure

[b] Slope obtained by linear regression between chemical shift and pseudodesmin A diffusion coefficients [c] Average chemical shift change calculated as $\delta_{av} = \delta({}^{1}H) + \delta(X)/n$ with n=2 for X= ${}^{13}C$ and n=5 for X= ${}^{15}N$

Second titration 1D ¹H spectra: evolution of chemical shift and line width

- p.17: H^N region
 p.18: H^α region
- p.19: aliphatic region
- p.20: methyl region

Stereo image of the solution structure

Solution structure statistics and restraint file

Statistics of the 40 lowest energy solution structures

Total distance re.	1	27				
intr	aresidual (i-j =0)	70				
Inte	erresidual (i-j =1)		35			
lon	g range (i-j >1)		22			
Violations ^[a]						
Nu	mber >= 0.2 Å	11.25	±	1.81		
Sur	n of violations (Å)	5.48	±	0.52		
Ma	ximum violation (Å)	0.52	±	0.05		
Structure energy						
Tot	al energy	-427.06	±	23.28		
bor	nd energy	51.56	±	1.13		
Val	lence angle energy	219.77	±	6.85		
Tor	rsion angle energy	-684.37	\pm	4.73		
Imp	proper energy	-74.02	\pm	5.08		
Cro	oss-term energy	1.84	±	0.39		
van	der Waals energy	146.66	±	10.96		
Ele	ctrostatic energy	-88.50	\pm	23.10		
Coordinate preci	sion (Å) ^[b]					
Hea	avy atoms (67) ^[c]	0.91	±	0.21		
Oli	gopeptide backbone (27)	0.15	±	0.08		
Hel	lix backbone (15) ^[d]	0.10	±	0.04		
Rin	ng backbone (22)	0.12	±	0.08		

[a] Expressed as mean energy ± standard deviation
[b] Expressed as mean RMSD ± standard deviation; between brackets is the number of atoms
[c] All heavy atoms except for the HDA moiety

[d] All backbone atoms from Leu1 C' until Ser6 C^{α}

Restraint file

The restraint file used to obtain the solution structure is provided on pages 23-25, containing chirality, distance and dihedral restraints.

	1					
BIOSYM restraint	\bot					
! !! -:						
#chiral						
I:LEU_I:CA S						
1:GLN_1B:CA R						
1:THR_1C:CA R						
1:THR_1C:CB R						
1:VAL_1D:CA R						
1:LEU_1E:CA R						
1:SER_1F:CA R						
1:LEU_1G:CA S						
1:SER_1H:CA R						
1:ILE_1I:CA S						
1:ILE_1I:CB S						
1:ALHD_1J:C2 R						
!						
#distance						
1:ILE_1I:HN	1:ILE_1I:HA	0.000	3.167	10.00	10.00	1000.000
1:ILE_1I:HN	1:ILE_1I:HB	0.000	3.770	10.00	10.00	1000.000
1:ILE_1I:HN	1:ILE_1I:HG1*	0.000	3.583	10.00	10.00	1000.000
1:ILE_1I:HN	1:THR_1C:HA	0.000	4.044	10.00	10.00	1000.000
1:ILE_1I:HN	1:THR_1C:HB	0.000	4.933	10.00	10.00	1000.000
1:ILE 1I:HN	1:THR 1C:HG*	0.000	6.453	10.00	10.00	1000.000
1:ILE 1I:HN	1:VAL 1D:HA	0.000	3.958	10.00	10.00	1000.000
1:ILE 1I:HN	1:SER 1F:HG	0.000	4.697	10.00	10.00	1000.000
1:ILE 1I:HN	1:LEU 1G:HB1	0.000	3.699	10.00	10.00	1000.000
1:ILE 1I:HN	1:LEU 1G:HB2	0.000	3.356	10.00	10.00	1000.000
1:ILE 1I:HN	1:SER 1H:HN	0.000	2.469	10.00	10.00	1000.000
1:ILE 1I:HN	1:SER 1H:HA	0.000	3.520	10.00	10.00	1000.000
1:ILE 11:HA	1:ILE 1I:HB	0.000	2.685	10.00	10.00	1000.000
1:ILE 1I:HA	1:ILE 1I:HG1*	0.000	4.447	10.00	10.00	1000.000
 1:TIE 1T:HA	1:THR 1C:HG*	0.000	5.181	10.00	10.00	1000.000
1:TLE 1T:HB	1:TLE 1T:HG1*	0.000	3.656	10.00	10.00	1000.000
1:TLE 1T:HB	1:TLE 1T:HG2*	0.000	3,201	10.00	10.00	1000.000
1:TLE 1T:HD1*	1:TLE $1T:HN$	0 000	5 041	10 00	10 00	1000 000
1:TLE 1T:HD1*	1:TLE $1T:HA$	0 000	5 405	10 00	10 00	1000 000
1:TLE 1T:HD1*	1:TLE 1T:HB	0 000	3 875	10 00	10 00	1000 000
1:TLE 1T:HG1*	1:THR 1C:HB	0 000	3 902	10.00	10.00	1000 000
1:TLE 1T:HG1*	1:VAL, 1D:HA	0 000	3 5 3 8	10.00	10.00	1000 000
1:TLE 1T:HG2*	1:TLE $1T:HN$	0 000	4 202	10.00	10.00	1000 000
1:TLE 1T:HC2*	1:TT.E 1T:HA	0 000	3 710	10.00	10.00	1000 000
1:LEU 1:HN	1:I.FII 1:HA	0.000	2.536	10.00	10.00	1000.000
1:1.FII 1:HN	1:GLN 1B:HN	0.000	3 240	10.00	10.00	1000.000
1:1.FII 1:HN	1: ALHD 1.T: HC*	0.000	3.210	10.00	10.00	1000.000
1:1.FII 1:HN	1: ALIND 1.7: H2	0.000	3 600	10.00	10.00	1000.000
		0.000	5 240	10.00	10.00	1000.000
	1.CIN 1D.UN	0.000	2.240 2.507	10.00	10.00	1000.000
	$1 \cdot \text{GLN} = 1 \cdot \text{GLN}$	0.000	4 560	10.00	10.00	1000.000
	1.1HK_IC.HN	0.000	4.30Z	10.00	10.00	1000.000
	$1 \cdot 1 = 0 - 1 \cdot 1 = 1$	0.000	1 162	10.00	10.00	1000.000
	1.VAL_ID.HN	0.000	4.403 2 477	10.00	10.00	1000.000
1.LEU_1.HB [*]	I·VAL_ID·HB	0.000	3.4// E E10	10.00	10.00	1000.000
1.LEU_1.HB [*]	$1 \cdot LEU_1 \cdot HD^*$	0.000	5.514	10.00	10.00	1000.000
⊥∙⊔⊑∪_⊥∙⊓В" 1•ггл 1•гл∗	т.ппт тылт 1.1 г.т. т. т.пл		5.0/4 5 710	10.00	10.00	1000.000
I.CIN 1D.UN	I.CIN ID.UA	0.000	0.11U	10.00	10.00	1000.000
	I.CIN 1D.ID.↓	0.000	4.900 2 EC7	10.00	10.00	1000.000
LOIN LBOHN	1.CIN 1D.UC+	0.000	3.30/	10.00	10.00	1000.000
L.GUN_IB.HN	I. THE TRANS	0.000	4.UZ6	10.00	10.00	1000.000
L.GUN_IB.HN	1.CIN 1D.UD*	0.000	∠.890 2.200	10.00	10.00	1000.000
I.GUN ID.UD.	T.GTN TD.MG+	0.000	3.388	10.00	10.00	1000.000
1:GLN_1B:HB*	1:GLN_1B:HG*	0.000	4.301	10.00	10.00	1000.000
T:GTNTR:HR*	T:IHK_IG:HN	0.000	4.579	T0.00	T0.00	T000.000

1:GLN_1B:HG*	1:THR_1C:HN	0.000	4.216	10.00	10.00	1000.000
1:GLN_1B:HG*	1:GLN_1B:HA	0.000	3.950	10.00	10.00	1000.000
1:THR_1C:HN	1:THR_1C:HB	0.000	2.670	10.00	10.00	1000.000
1:THR 1C:HN	1:THR 1C:HG*	0.000	3.648	10.00	10.00	1000.000
1:THR 1C:HN	1:VAL 1D:HN	0.000	2.627	10.00	10.00	1000.000
1:THR 1C:HA	1:VAL 1D:HN	0.000	3.515	10.00	10.00	1000.000
1:THR 1C:HA	1:SER 1F:HG	0.000	2.606	10.00	10.00	1000.000
1:THR 1C:HA	1:SER 1H:HN	0.000	3.563	10.00	10.00	1000.000
1:THR 1C:HB	1:VAL 1D:HN	0 000	2 923	10 00	10 00	1000 000
1:THR 1C:HB	1:VAL 1D:HG1*	0 000	4 618	10 00	10 00	1000 000
1:THR 1C:HB	1:ALHD 1.T:HC*	0 000	4 560	10 00	10 00	1000 000
1:THR 1C:HC*	1:THR 1C:HA	0.000	3 342	10.00	10.00	1000.000
1.THP 1C.HC*		0.000	5 780	10.00	10.00	1000.000
		0.000	5 622	10.00	10.00	1000.000
1.VAL_ID.HN	1.VAL 10.UA	0.000	3 063	10.00	10.00	1000.000
$1 \cdot VAL_1D \cdot HN$	$1 \cdot VAL_1D \cdot HA$	0.000	3.003	10.00	10.00	1000.000
1.VAL_ID.HN	1. VAL_ID. HB	0.000	2.547	10.00	10.00	1000.000
1.VAL_ID.HN	1.LEU_IE.HN	0.000	2.702	10.00	10.00	1000.000
I:VAL_ID:HA	1:VAL_ID:HB	0.000	3.455	10.00	10.00	1000.000
I:VAL_ID:HA	1:LEU_IE:HN	0.000	3.933	10.00	10.00	1000.000
I:VAL_ID:HA	I:LEU_IG:HN	0.000	3.530	10.00	10.00	1000.000
I:VAL_ID:HA	I:LEU_IG:HBI	0.000	3.905	10.00	10.00	1000.000
1:VAL_1D:HA	1:SER_1H:HN	0.000	4.650	10.00	10.00	1000.000
1:VAL_1D:HB	1:LEU_1E:HN	0.000	2.834	10.00	10.00	1000.000
1:VAL_1D:HG2*	1:VAL_1D:HN	0.000	4.674	10.00	10.00	1000.000
1:VAL_1D:HG2*	1:VAL_1D:HA	0.000	3.722	10.00	10.00	1000.000
1:VAL_1D:HG1*	1:VAL_1D:HN	0.000	3.553	10.00	10.00	1000.000
1:VAL_1D:HG1*	1:VAL_1D:HA	0.000	3.566	10.00	10.00	1000.000
1:LEU_1E:HD*	1:LEU_1E:HN	0.000	6.274	10.00	10.00	1000.000
1:LEU_1E:HD*	1:LEU_1E:HA	0.000	4.762	10.00	10.00	1000.000
1:LEU_1E:HD*	1:LEU_1E:HB2	0.000	4.627	10.00	10.00	1000.000
1:LEU_1E:HD*	1:LEU_1E:HB1	0.000	4.774	10.00	10.00	1000.000
1:LEU_1E:HN	1:LEU_1E:HA	0.000	3.035	10.00	10.00	1000.000
1:LEU_1E:HN	1:LEU_1E:HG	0.000	2.626	10.00	10.00	1000.000
1:LEU_1E:HA	1:LEU_1E:HB2	0.000	2.899	10.00	10.00	1000.000
1:LEU_1E:HA	1:LEU_1E:HB1	0.000	2.591	10.00	10.00	1000.000
1:LEU_1E:HA	1:LEU_1E:HG	0.000	3.021	10.00	10.00	1000.000
1:LEU_1E:HA	1:SER_1F:HN	0.000	3.091	10.00	10.00	1000.000
1:LEU 1E:HB2	1:LEU 1E:HN	0.000	3.623	10.00	10.00	1000.000
1:LEU 1E:HB2	1:LEU 1E:HG	0.000	2.838	10.00	10.00	1000.000
1:LEU 1E:HB2	1:SER 1F:HN	0.000	3.425	10.00	10.00	1000.000
1:LEU 1E:HB1	1:SER 1F:HN	0.000	3.179	10.00	10.00	1000.000
1:SER 1F:HN	1:LEU 1E:HN	0.000	3.050	10.00	10.00	1000.000
1:SER 1F:HN	1:SER 1F:HB1	0.000	2.875	10.00	10.00	1000.000
1:SER 1F:HN	1:SER 1F:HB2	0.000	3.617	10.00	10.00	1000.000
1:SER 1F:HN	1:SER 1F:HG	0.000	2.522	10.00	10.00	1000.000
1:SER 1F:HN	1:SER 1H:HN	0.000	3,939	10.00	10.00	1000.000
1:SER 1F:HA	1:SER 1F:HB1	0 000	2 573	10 00	10 00	1000 000
1:SER 1F:HA	1:SER 1F:HB2	0 000	2 583	10 00	10 00	1000 000
1:SER 1F:HA	1:SER 1F:HG	0 000	4 053	10.00	10.00	1000.000
1:SER 1F:HB1	1:THR 1C:HG*	0 000	5 129	10.00	10.00	1000.000
1. CED 1E. UD1	1. GED 1E.UC	0.000	2.122	10.00	10.00	1000.000
1.CED 1E.HD2	1.SER_IF.HG	0.000	2.520	10.00	10.00	1000.000
1. CED 1E.UC	1. JER_IF. HG	0.000	6 260	10.00	10.00	1000.000
1.0EV 1E.RG	1.0FD 10.0M	0.000	0.200 2 201	10.00	10.00	1000.000
1. JER_IF. HG	L·DER_IH·HN 1·I EII 1E·IM	0.000	J.JOL 1 101	10.00	10.00	1000.000
L·LEU_LG·HN		0.000	4.4∠⊥ 2.1⊑0	10.00	10.00	1000.000
I.LEU_IG:HN	L·LEU_LG:HA	0.000	3.150	10.00	10.00	1000.000
I.LEU_IG:HN	T.TEATORE	0.000	3.435	10.00	10.00	1000.000
I . LEU_IG:HN	L:LEU_IG:HD*	0.000	6.457	10.00	10.00	1000.000
I:LEU_IG:HN	1:SER_TH:HN	0.000	2./86	10.00	10.00	T000.000
1:LEU_1G:HA	1:LEU_1G:HB1	0.000	2.800	10.00	10.00	1000.000
l:LEU_1G:HA	l:LEU_1G:HD*	0.000	4.861	10.00	10.00	1000.000

1:LEU_1G:HB1	1:LEU_1G:HD'	* 0.000	4.375	10.00	10.00	1000	0.000)	
1:LEU_1G:HB1	1:SER_1H:HN	0.000	3.942	10.00	10.00	1000	0.000)	
1:LEU_1G:HB2	1:SER_1H:HN	0.000	3.441	10.00	10.00	1000	0.000)	
1:LEU_1G:HD*	1:VAL_1D:HA	0.000	5.376	10.00	10.00	1000	0.00)	
1:ALHD_1J:HC*	1:ALHD_1J:H2	2 0.000	3.666	10.00	10.00	1000	0.000)	
1:ALHD_1J:H3*	1:LEU_1:HN	0.000	5.102	10.00	10.00	1000	0.000)	
1:ALHD_1J:H3*	1:ALHD_1J:HO	C* 0.000	4.510	10.00	10.00	1000	0.000)	
1:ALHD_1J:H3*	1:ALHD_1J:H2	2 0.000	3.652	10.00	10.00	1000	0.00)	
1:ALHD_1J:H4*	1:ALHD_1J:H2	2 0.000	3.924	10.00	10.00	1000	0.00)	
1:ALHD_1J:HH	1:LEU_1:HN	0.000	4.619	10.00	10.00	1000	0.00)	
1:ALHD_1J:HH	1:GLN_1B:HN	0.000	4.430	10.00	10.00	1000	0.00)	
1:SER_1H:HN	1:LEU_1G:HA	0.000	3.394	10.00	10.00	1000	0.000)	
1:SER_1H:HN	1:SER_1H:HA	0.000	3.126	10.00	10.00	1000	0.000)	
1:SER_1H:HN	1:SER_1H:HB2	2 0.000	3.264	10.00	10.00	1000	0.000)	
1:SER_1H:HA	1:SER_1H:HB2	2 0.000	2.598	10.00	10.00	1000	0.000)	
1:SER_1H:HA	1:SER_1H:HB	1 0.000	2.771	10.00	10.00	1000	0.000)	
1:SER_1H:HA	1:SER_1H:HG	0.000	3.495	10.00	10.00	1000	0.000)	
1:SER_1H:HB1	1:ILE_1I:HN	0.000	3.725	10.00	10.00	1000	0.000)	
1:SER_1H:HB1	1:SER_1H:HN	0.000	2.972	10.00	10.00	1000	0.000)	
1:SER_1H:HG	1:ILE_1I:HN	0.000	3.989	10.00	10.00	1000	0.000)	
1:SER_1H:HG	1:SER_1H:HN	0.000	2.741	10.00	10.00	1000	0.000)	
1:SER_1H:HG	1:SER_1H:HB2	2 0.000	2.341	10.00	10.00	1000	0.000)	
!									
#NMR_dihedral									
1:ALHD_1J:C	1:ALHD_1J:C1	1:LEU_1:N	1:LEU	_1:CA	175	-175	100	100	1000
1:LEU_1:CA	1:LEU_1:C	1:GLN_1B:N	1:GLN	_1B:CA	175	-175	100	100	1000
1:GLN_1B:CA	1:GLN_1B:C	1:THR_1C:N	1:THR	_1C:CA	175	-175	100	100	1000
1:THR_1C:CA	1:THR_1C:C	1:VAL_1D:N	1:VAL	_1D:CA	175	-175	100	100	1000
1:VAL_1D:CA	1:VAL_1D:C	1:LEU_1E:N	1:LEU	_1E:CA	175	-175	100	100	1000
1:LEU_1E:CA	1:LEU_1E:C	1:SER_1F:N	1:SER	_1F:CA	175	-175	100	100	1000
1:SER_1F:CA	1:SER_1F:C	1:LEU_1G:N	1:LEU	_1G:CA	175	-175	100	100	1000
1:LEU_1G:CA	1:LEU_1G:C	1:SER_1H:N	1:SER	_1H:CA	175	-175	100	100	1000
1:SER_1H:CA	1:SER_1H:C	1:ILE_1I:N	1:ILE	_1I:CA	175	-175	100	100	1000

¹H/²H exchange curves in acetonitrile

The moment of adding the D_2O is chosen as 0 s, while the peak integrals are normalised to the first data point measured.

(a) 700.13 MHz(b) 500.13 MHz(c) 300.13 MHz

The H^N region (left) and methyl region (right) of the 1D ¹H NMR spectrum of pseudodesmin A in DMSO solution is shown at three different field strengths on a hertz scale. Note the increase in line width for several H^N resonances with increasing line width, indicating an exchange process going towards the point of coalescence. For comparison, the methyl region shows no change in line width.

Spectra were recorded on a 16.4 T Bruker Avance II spectrometer equipped with a 5mm ¹H, ¹³C, ¹⁵N TXI-Z probe, a 11.7 T Bruker DRX spectrometer equipped with a 5mm ¹H, ¹³C, ¹⁵N TXI-Z probe and a 7.0 T Bruker Avance spectrometer equipped with a 5mm BBO gradient probe. Temperature was set at 298.0 K on each spectrometer.

Temperature dependence of the pseudodesmin A resonance line widths and temperature coefficients of amide ¹H resonances in DMSO solution

 H^{N} and H^{α} regions of the 500.13 MHz ¹H NMR spectrum of pseudodesmin A in (a) acetonitrile at 298.0 K; (b) DMSO at 297.4 K; (c) DMSO at 309.4 K; (d) DMSO 321.4 K; (e) DMSO at 339.4 K. Amide H^{N} resonances are labelled according to residue.

DMSO [ppb/K]									
Leu1	1.27	$(0.72)^{a}$							
Gln2	4.43	$(0.95)^{b}$							
Thr3	-2.88	(0.98)							
Val4	-9.48	(0.99)							
Leu5	-3.61	(1.00)							
Ser6	-14.07	(0.99)							
Leu7	-11.93	(0.99)							
Ser8	1.34	(0.89) ^c							
Ile9	-7.39	(0.99)							
Gln2 NH ₂ 1	-2.41	(1.00)							
$Gln2 NH_2 2$	-3.47	(1.00)							

Amide	temperature	coefficients	ir
	DMSO [pp	ob/K]	

Listed values are the slopes obtained from linear regression between chemical shift and temperature, expressed in ppb/K. The numbers in brackets are Pearson correlation coefficients (R^2).

- [a] Non-linear behaviour, parabolic fit ($R^2 = 1.00$): $\delta [ppm] = -7.67 \times 10^{-5} T^2 + 5.06 \times 10^{-2} T + 0.016$
- [b] Non-linear behaviour, parabolic fit ($\mathbf{R}^2 = 1.00$): $\delta [ppm] = -8.02 \times 10^{-5} T^2 + 5.59 \times 10^{-2} T 0.800$
- [c] Non-linear behaviour, parabolic fit ($\mathbb{R}^2 = 1.00$): $\delta [ppm] = -3.90 \times 10^{-5} T^2 + 2.62 \times 10^{-2} T + 3.317$

REMARK pseudodesminA_solstruc.pdb REMARK The lowest energy NMR solution structure of pseudodesmin A in PDB format

REMARK	4									
REMARK	4 I	KMCP	COMPLIES	WITH	FORMAT V.	2.0, 8	-NOV-200	7		
ATOM	1	Ν	LEU	1	0.058	21.889	-0.337	1.00	0.00	N
ATOM	2	CA	LEU	1	1.273	22.713	-0.365	1.00	0.00	C
ATOM	3	С	LEU	1	1.449	23.364	1.053	1.00	0.00	C
ATOM	4	0	LEU	1	1.508	24.587	1.186	1.00	0.00	0
ATOM	5	СВ	LEU	1	1.279	23.765	-1.496	1.00	0.00	С
ATOM	6	CG	LEU	1	1.153	23.247	-2.949	1.00	0.00	C
АТОМ	7	CD1	LEU	1	1.084	24.440	-3.921	1.00	0.00	C
ATOM	8	CD2	LEII	1	2 293	22 296	-3 357	1 00	0 00	C
	q	비	I.FII	1	0 131	20 910	-0 584	1 00	0.00	с ч
	10	ил		1	2 127	20.910	_0 499	1 00	0.00	11 11
ATOM	11			1	0 467	22.027	_1 309	1 00	0.00	11 U
ATOM	10	םחד סתר		1	0.407	24.407	_1 402	1 00	0.00	11 U
ATOM	12 12			1	2.225	24.331	-1.402	1 00	0.00	п 11
ATOM	13	HG OUD 1	LEU	1	0.200	22.092	-3.041	1.00	0.00	H
ATOM	14	ZHDI	LEU	1	2.011	25.035	-3.8/8	1.00	0.00	H
ATOM	15	3HDI	LEU 	1	0.949	24.107	-4.964	1.00	0.00	H
ATOM	16	THDI	上近し	1	0.243	25.111	-3.6/9	1.00	0.00	H
ATOM	17	2HD2	ΓEΟ	T	3.272	22.794	-3.267	1.00	0.00	Н
ATOM	18	3HD2	LEU	1	2.320	21.386	-2.737	1.00	0.00	H
ATOM	19	1HD2	LEU	1	2.178	21.973	-4.405	1.00	0.00	H
ATOM	20	Ν	GLN	1B	1.575	22.505	2.140	1.00	0.00	N
ATOM	21	CA	GLN	1B	1.782	23.074	3.479	1.00	0.00	C
ATOM	22	С	GLN	1B	0.536	23.902	3.937	1.00	0.00	C
ATOM	23	0	GLN	1B	0.718	24.811	4.746	1.00	0.00	0
ATOM	24	CB	GLN	1B	2.128	22.042	4.577	1.00	0.00	C
ATOM	25	CG	GLN	1B	1.103	20.926	4.901	1.00	0.00	C
ATOM	26	CD	GLN	1B	1.211	19.762	3.926	1.00	0.00	C
ATOM	27	OE1	GLN	1B	0.713	19.797	2.807	1.00	0.00	0
ATOM	28	NE2	GLN	1B	1.911	18.668	4.382	1.00	0.00	Ν
ATOM	29	Н	GLN	1B	1.460	21.502	2.049	1.00	0.00	Н
ATOM	30	HA	GLN	1B	2.612	23.796	3.419	1.00	0.00	Н
ATOM	31	1HB	GLN	1B	3.101	21.576	4.343	1.00	0.00	Н
ATOM	32	2HB	GLN	1B	2.290	22.634	5.497	1.00	0.00	Н
ATOM	33	1HG	GLN	1B	1.265	20.575	5.935	1.00	0.00	Н
ATOM	34	2HG	GLN	1B	0.067	21.298	4.858	1.00	0.00	Н
ATOM	35	1HE2	GLN	1B	2.320	18.646	5.299	1.00	0.00	Н
ATOM	36	2HE2	GLN	1B	2.002	17.880	3.763	1.00	0.00	н
ATOM	37	Ν	THR	1C	-0.744	23.647	3.448	1.00	0.00	Ν
АТОМ	38	CA	THR	1C	-1.871	24.501	3.858	1.00	0.00	С
АТОМ	39	С	THR	1C	-1.772	25.893	3.178	1.00	0.00	C
АТОМ	40	0	THR	1C	-2.048	26.891	3.845	1.00	0.00	0
ATOM	41	CB	THR	1C	-3 287	23 936	3 590	1 00	0 00	C
	42	CG2	THR	10	-3 476	22.550	4 452	1 00	0.00	C
	43	соz ц	TIIN	10	-0 874	22.070	2 672	1 00	0.00	с ч
ATOM	4Δ	ил	TIIN	10	-1 778	23.014	4 933	1 00	0.00	11 T
ATOM	11 45	UD	TIIN	10	-3 396	24.000	2 509	1 00	0.00	11 T
ATOM	15	1102		10	1 171	23.741	4 221	1 00	0.00	11 11
ATOM	40	TUG2		10	-4.4/4	22.234	4.331	1 00	0.00	п
ATOM	4/			10	-2.720	21.900	4.230	1 00	0.00	п
ATOM	40	SUG2			1 270	22.950	1 950	1 00	0.00	п
ATOM	49	N N	VAL		-1.370	23.992	1 265	1 00	0.00	N
ATOM	50 E 1	CA	VAL		-1.1/0	21.320	1.405	1 00	0.00	Ċ
ATOM	ΣL	0	VAL		0.001	∠0.UUX	∠.U38 2.400	1 00	0.00	Ċ
ATOM	ວ∠ ⊏າ		VAL		-0.144	49.1/3	∠.4UU 0.247	1 00	0.00	0
ATOM	ວງ ⊏^	CB	VAL		-0.8/2	21.200	-0.24/	1 00	0.00	C
ATOM	54 57	CGI	VAL		-2.002	20.00/	-1.051	1 00	0.00	C ~
ATOM	55	CG2	VAL		-0.599	28.684	-0.840	1.00	0.00	C
ATOM	56	н	VAL	тD	-1.154	∠5.⊥63	1.31b	T.00	0.00	H

ATOM	57	HA	VAL	1D	-2.071	27.929	1.473	1.00	0.00	Н
ATOM	58	HB	VAL	1D	0.045	26.686	-0.384	1.00	0.00	Н
ATOM	59	1HG1	VAL	1D	-2.210	25.580	-0.711	1.00	0.00	Н
ATOM	60	2HG1	VAL	1D	-2.943	27.171	-0.962	1.00	0.00	Н
АТОМ	61	3HG1	VAL	1D	-1.746	26.544	-2.121	1.00	0.00	н
ATOM	62	2HG2	VAT.	1D	0 264	29 179	-0 366	1 00	0 00	 Н
ATOM	63	3HG3	VILL VAT.	בב 1 ח	-0 384	28 618	-1 919	1 00	0 00	н Н
	64	14C2		בב 1 ח	-1 473	20.010	-0 712	1 00	0.00	11 11
	65	M		10 10	1 150	27.344	0.712	1 00	0.00	II N
	00				1.139	27.290	2.391 2.120	1 00	0.00	N
	00	CA		15	2.232	27.930	3.130	1.00	0.00	C
	67	C		15	1.090	20.400	4.505	1.00	0.00	C
ATOM	00	0 CD			2.010	29.503	4.911	1.00	0.00	0
ATOM	69	CB		15	3.410	26.997	3.43/	1.00	0.00	C
ATOM	70	CG		15	4.328	20.042	2.244	1.00	0.00	C
ATOM	/1	CDI	LEU	15	5.064	27.865	1.668	1.00	0.00	Ċ
ATOM	12	CD2	LEU	15	5.346	25.562	2.654	1.00	0.00	Ċ
ATOM	/3	H		15	1.282	20.337	2.034	1.00	0.00	H
ATOM	/4	HA	LEU	15	2.5/2	28.819	2.605	1.00	0.00	H
ATOM	/5	THR	LEU		4.003	27.478	4.234	1.00	0.00	Н
ATOM	76	2HB	LEU 	15	3.010	26.076	3.885	1.00	0.00	Н
ATOM		HG	LEU 	15	3.701	26.222	1.436	1.00	0.00	Н
ATOM	78	ZHDI	LEO	ΤE	4.371	28.623	1.270	1.00	0.00	Н
ATOM	./9	3HD1	LEU	lΕ	5.686	28.350	2.438	1.00	0.00	Н
ATOM	80	1HD1	LEU	1E	5.729	27.569	0.840	1.00	0.00	Н
ATOM	81	2HD2	LEU	1E	5.986	25.268	1.805	1.00	0.00	Н
ATOM	82	3HD2	LEU	1E	6.005	25.932	3.457	1.00	0.00	Н
ATOM	83	1HD2	LEU	1E	4.849	24.650	3.022	1.00	0.00	Н
ATOM	84	Ν	SER	1F	0.893	27.616	5.232	1.00	0.00	N
ATOM	85	CA	SER	1F	0.358	27.935	6.561	1.00	0.00	C
ATOM	86	С	SER	1F	-0.634	29.151	6.519	1.00	0.00	C
ATOM	87	0	SER	1F	-0.892	29.746	7.565	1.00	0.00	0
ATOM	88	CB	SER	1F	-0.475	26.769	7.138	1.00	0.00	C
ATOM	89	OG	SER	1F	-1.751	26.606	6.523	1.00	0.00	0
ATOM	90	Н	SER	1F	0.758	26.695	4.838	1.00	0.00	H
ATOM	91	HA	SER	1F	1.182	28.191	7.244	1.00	0.00	H
ATOM	92	1HB	SER	1F	0.064	25.805	7.081	1.00	0.00	Н
ATOM	93	2HB	SER	1F	-0.672	26.972	8.199	1.00	0.00	H
ATOM	94	HG	SER	1F	-1.554	26.533	5.566	1.00	0.00	H
ATOM	95	Ν	LEU	1G	-1.283	29.487	5.330	1.00	0.00	N
ATOM	96	CA	LEU	1G	-2.321	30.521	5.280	1.00	0.00	C
ATOM	97	С	LEU	1G	-3.586	30.046	6.080	1.00	0.00	C
ATOM	98	0	LEU	1G	-4.420	30.878	6.436	1.00	0.00	0
ATOM	99	CB	LEU	1G	-2.817	30.826	3.836	1.00	0.00	C
ATOM	100	CG	LEU	1G	-2.542	32.258	3.324	1.00	0.00	C
ATOM	101	CD1	LEU	1G	-1.039	32.579	3.232	1.00	0.00	C
ATOM	102	CD2	LEU	1G	-3.214	32.472	1.956	1.00	0.00	C
ATOM	103	Н	LEU	1G	-0.966	29.090	4.451	1.00	0.00	Н
ATOM	104	HA	LEU	1G	-1.960	31.423	5.781	1.00	0.00	Н
ATOM	105	1HB	LEU	1G	-2.395	30.110	3.116	1.00	0.00	Н
ATOM	106	2HB	LEU	1G	-3.905	30.632	3.793	1.00	0.00	Н
ATOM	107	HG	LEU	1G	-2.999	32.969	4.039	1.00	0.00	H
ATOM	108	2HD1	LEU	1G	-0.876	33.615	2.893	1.00	0.00	Н
ATOM	109	3HD1	LEU	1G	-0.525	32.466	4.200	1.00	0.00	Н
ATOM	110	1HD1	LEU	1G	-0.538	31.911	2.512	1.00	0.00	Н
ATOM	111	2HD2	LEU	1G	-4.301	32.293	2.004	1.00	0.00	Н
ATOM	112	3HD2	LEU	1G	-3.064	33.500	1.588	1.00	0.00	Н
ATOM	113	1HD2	LEU	1G	-2.794	31.783	1.204	1.00	0.00	Н
ATOM	114	C1	ALHD	1J	-1.187	22.322	0.068	1.00	0.00	C
ATOM	115	02	ALHD	1J	-1.382	23.451	0.506	1.00	0.00	0
ATOM	116	С	ALHD	1J	-2.342	21.314	-0.012	1.00	0.00	C
ATOM	117	C2	ALHD	1J	-2.132	20.221	1.044	1.00	0.00	C

		~ ~			0 0 0 1		1			-
ATOM	118	C3	ALHD	1J	-3.381	19.339	1.238	1.00	0.00	C
ATOM	119	C4	ALHD	1J	-3.276	18.269	2.347	1.00	0.00	C
ATOM	120	C5	ALHD	1J	-3.112	18.842	3.767	1.00	0.00	C
ATOM	121	CG	ALHD	1J	-3.031	17.763	4.861	1.00	0.00	C
ATOM	122	C7	ALHD	1J	-2.964	18.312	6.301	1.00	0.00	C
ATOM	123	C8	ALHD	1J	-1.731	19.181	6.614	1.00	0.00	С
ATOM	124	C9	AT.HD	<u>1</u> .т	-1 683	19 646	8 075	1 00	0 00	C
	125	ΟU		1.T	_1 000	10 /20	0.659	1 00	0.00	0
ATOM	100	1110		1 7	-1.000	19.439	1 010	1 00	0.00	0
ATOM	126	THC	ALHD	IJ	-2.403	20.869	-1.019	1.00	0.00	H
ATOM	127	2HC	ALHD	IJ	-3.275	21.869	0.164	1.00	0.00	Н
ATOM	128	Н2	ALHD	1J	-1.907	20.740	1.994	1.00	0.00	H
ATOM	129	1H3	ALHD	1J	-3.599	18.836	0.277	1.00	0.00	H
ATOM	130	2H3	ALHD	1J	-4.252	19.985	1.451	1.00	0.00	H
ATOM	131	1H4	ALHD	1J	-2.435	17.588	2.126	1.00	0.00	Н
ATOM	132	2H4	ALHD	1J	-4.188	17.645	2.319	1.00	0.00	Н
ATOM	133	1H5	ALHD	1J	-3.960	19.516	3.983	1.00	0.00	Н
АТОМ	134	2H5	ALHD	1. Т	-2.200	19,462	3.809	1.00	0.00	н
∆т∩м	135	1H6	ат.нр	 1.т	-2 150	17 122	4 675	1 00	0 00	 H
	126	2110		1.T	_2.130	17 101	1.079	1 00	0.00	л ц
ATOM	127	1117		10 1 T	-3.913	17.101	7 005	1 00	0.00	п
ATOM	120		ALHD	10 1 -	-2.964	10 000	7.005	1.00	0.00	н
ATOM	138	2H /	ALHD	1J 1 -	-3.8/9	18.898	6.506	1.00	0.00	H
ATOM	139	TH8	ALHD	ΤJ	-1.727	20.070	5.961	1.00	0.00	Н
ATOM	140	2H8	ALHD	1J	-0.813	18.614	6.381	1.00	0.00	H
ATOM	141	1H9	ALHD	1J	-1.649	18.787	8.764	1.00	0.00	H
ATOM	142	2H9	ALHD	1J	-0.794	20.268	8.268	1.00	0.00	H
ATOM	143	3Н9	ALHD	1J	-2.573	20.246	8.326	1.00	0.00	Н
ATOM	144	HH	ALHD	1J	-0.546	19.203	1.487	1.00	0.00	Н
ATOM	145	Ν	SER	1H	-3.786	28.689	6.283	1.00	0.00	Ν
ATOM	146	CA	SER	1H	-4.972	28.136	6.985	1.00	0.00	С
АТОМ	147	C	SER	 1 ਸ	-5 983	27 469	6 002	1 00	0 00	C
ATOM	148	0	SER	1 ਸ	-7 144	27 234	6 330	1 00	0 00	0
ATOM	1/0	CD	CED	1 U	1 554	27.231	0.000	1 00	0.00	C
ATOM	1 5 0		CED	111	4 007	27.005	0.011 7 E10	1 00	0.00	C
ATOM	150	UG	SER		-4.097	25.030	7.510	1.00	0.00	0
ATOM	151	H	SER		-2.983	28.075	0.100	1.00	0.00	H
ATOM	152	HA	SER	1H	-5.482	28.948	7.511	1.00	0.00	H
ATOM	153	THB	SER	lΗ	-3.786	27.533	8.656	1.00	0.00	H
ATOM	154	2HB	SER	1H	-5.411	26.844	8.622	1.00	0.00	H
ATOM	155	HG	SER	1H	-3.180	26.031	7.266	1.00	0.00	H
ATOM	156	N	ILE	1I	-5.477	27.123	4.770	1.00	0.00	N
ATOM	157	CA	ILE	1I	-6.163	26.377	3.703	1.00	0.00	C
ATOM	158	С	ILE	1I	-5.424	25.053	3.325	1.00	0.00	C
ATOM	159	0	ILE	1I	-5.852	24.231	2.525	1.00	0.00	0
ATOM	160	СВ	ILE	1I	-6.388	27.232	2.428	1.00	0.00	С
ATOM	161	CG1	TLE	1т	-5 058	27 681	1 766	1 00	0 00	Ċ
ATOM	162	CG2	TT.F	тт 1 т	-7 328	28 421	2 732	1 00	0 00	C
ATOM	162			1 T	F 212	20.121	0 472	1 00	0.00	c
ATOM	103	CDI		1 T	-3.212	20.495	0.472	1 00	0.00	C II
ATOM	164	H	115		-4.523	27.404	4.601	1.00	0.00	H
ATOM	165	HA	ТГЕ		-7.132	26.036	4.100	1.00	0.00	Н
ATOM	166	HB	ILE	1I	-6.915	26.570	1.716	1.00	0.00	H
ATOM	167	1HG1	ILE	1I	-4.471	28.282	2.483	1.00	0.00	H
ATOM	168	2HG1	ILE	1I	-4.443	26.788	1.543	1.00	0.00	H
ATOM	169	2HG2	ILE	1I	-7.651	28.938	1.814	1.00	0.00	Н
ATOM	170	3HG2	ILE	1I	-8.241	28.082	3.249	1.00	0.00	Н
ATOM	171	1HG2	ILE	11	-6.837	29.166	3.380	1.00	0.00	Н
ATOM	172	2HD1	ILE	1I	-4.226	28.762	0.061	1.00	0.00	H
	172	3HD1	TLE	 1т	-5 755	27 921	-0 297	1 00	0 00	и 11
	174	1 חדים 1 חדים	 TT.F	тт 1 т	-5 757	29 435	0 643	1 00	0 00	11 U
	エ / ユ 1 フ ⊑		ODD T D D	 1 k	_A 0/2	22.73J 24 020	2 027	1 00	0.00	п
	τıυ	Un	Jun	ΤIV	7.473	47.740	106.0	T .00	0.00	0
עאנים										