149 research outputs found

    Tracking Pacific bluefin tuna (Thunnus thynnus orientalis) in the northeastern Pacific with an automated algorithm that estimates latitude by matching sea-surface-temperature data from satellites with temperature data from tags on fish

    Get PDF
    Data recovered from 11 popup satellite archival tags and 3 surgically implanted archival tags were used to analyze the movement patterns of juvenile northern bluefin tuna (Thunnus thynnus orientalis) in the eastern Pacific. The light sensors on archival and pop-up satellite transmitting archival tags (PSATs) provide data on the time of sunrise and sunset, allowing the calculation of an approximate geographic position of the animal. Light-based estimates of longitude are relatively robust but latitude estimates are prone to large degrees of error, particularly near the times of the equinoxes and when the tag is at low latitudes. Estimating latitude remains a problem for researchers using light-based geolocation algorithms and it has been suggested that sea surface temperature data from satellites may be a useful tool for refining latitude estimates. Tag data from bluefin tuna were subjected to a newly developed algorithm, called “PSAT Tracker,” which automatically matches sea surface temperature data from the tags with sea surface temperatures recorded by satellites. The results of this algorithm compared favorably to the estimates of latitude calculated with the lightbased algorithms and allowed for estimation of fish positions during times of the year when the lightbased algorithms failed. Three near one-year tracks produced by PSAT tracker showed that the fish range from the California−Oregon border to southern Baja California, Mexico, and that the majority of time is spent off the coast of central Baja Mexico. A seasonal movement pattern was evident; the fish spend winter and spring off central Baja California, and summer through fall is spent moving northward to Oregon and returning to Baja California

    Cycling of nitrogen by plankton: A hypothetical description based upon efficiency of energy conversion

    Get PDF
    Numerous studies of the nitrogen cycle in the upper ocean have shown that the growth of oceanic phytoplankton is often largely supported by the supply of ammonium excreted by herbivorous zooplankton and members of other tropic levels. Despite considerable knowledge of the growth and metabolic responses of phytoplankton and herbivorous zooplankton to supplies of energy and nutrients, no general quantitative description of nitrogen cycling in the planktonic community has been proposed. Here we present a hypothetical description of a closed, steady state, and well mixed water column in which nitrogen is cycled between a nutrient pool, the crop of phytoplankton, and the stock of zooplankton. The description is based upon the mathematical models of growth and metabolic regulation of phytoplankton (Kiefer and Mitchell, 1983) and of a small macroherbivore (Lehman, 1976). In order to resolve the system\u27s state, we propose that the stable system achieves an optimal efficiency in the conversion of the radiant energy into the chemical energy stored in herbivore biomass. We have solved the equations for such a system in which the light fields and total concentrations of nitrogen within the mixed layer are varied. The response of the phytoplankton to variations in radiant energy is different from the responses of the herbivores; the phytoplankton vary their growth rates but maintain crop size while the herbivores vary stock size but maintain growth rate. On the other hand, the response of the phytoplankton and herbivores to variations in nitrogen concentration within the mixed layer are similar: the growth rates and standing stocks of both the phytoplankter and herbivore increase with nitrogen concentration until saturation. A preliminary comparison of these predictions with oceanographic observations indicates consistency

    Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery

    Get PDF
    Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties

    DOCTORS OVERLOOK BENEFITS OF OMEGA-3 FATTY ACIDS FOR BONE HEALTH

    Get PDF

    CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the {\beta}-globin locus

    Get PDF
    The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the 3-dimensional folding of a 1 Mbp region of human chromosome 11 containing the {\beta}-globin genes by integrating looping interactions of the insulator protein CTCF determined comprehensively by chromosome conformation capture (3C) into a polymer model of chromatin. We find that CTCF-mediated cell type specific interactions in erythroid cells are organized to favor contacts known to occur in vivo between the {\beta}-globin locus control region (LCR) and genes. In these cells, the modeled {\beta}-globin domain folds into a globule with the LCR and the active globin genes on the periphery. By contrast, in non-erythroid cells, the globule is less compact with few but dominant CTCF interactions driving the genes away from the LCR. This leads to a decrease in contact frequencies that can exceed 1000-fold depending on the stiffness of the chromatin and the exact positioning of the genes. Our findings show that an ensemble of CTCF contacts functionally affects spatial distances between control elements and target genes contributing to chromosomal organization required for transcription.Comment: Full article, including Supp. Mat., is available at Nucleic Acids Research, doi: 10.1093/nar/gks53

    SeaWiFS Technical Report Series

    Get PDF
    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm

    The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity

    Get PDF
    Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300-100 hPa. UTH is a challenging measurement, because concentrations vary between 2-1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180-250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average similar to 30 % agreement amongst themselves and frost-point data but with an additional similar to 30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa

    The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity

    Get PDF
    Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300–100 hPa. UTH is a challenging measurement, because concentrations vary between 2–1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180–250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average ∼30 % agreement amongst themselves and frost-point data but with an additional ∼30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa

    Dancers entrain more effectively than non-dancers to another actor's movements

    Get PDF
    For many everyday sensorimotor tasks, trained dancers have been found to exhibit distinct and sometimes superior (more stable or robust) patterns of behavior compared to non-dancers. Past research has demonstrated that experts in fields requiring specialized physical training and behavioral control exhibit superior interpersonal coordination capabilities for expertise-related tasks. To date, however, no published studies have compared dancers’ abilities to coordinate their movements with the movements of another individual—i.e., during a so-called visual-motor interpersonal coordination task. The current study was designed to investigate whether trained dancers would be better able to coordinate with a partner performing short sequences of dance-like movements than non-dancers. Movement time series were recorded for individual dancers and non-dancers asked to synchronize with a confederate during three different movement sequences characterized by distinct dance styles (i.e., dance team routine, contemporary ballet, mixed style) without hearing any auditory signals or music. A diverse range of linear and nonlinear analyses (i.e., Cross-correlation, Cross-Recurrence Quantification Analysis (CRQA), and Cross-Wavelet analysis) provided converging measures of coordination across multiple time scales. While overall levels of interpersonal coordination were influenced by differences in movement sequence for both groups, dancers consistently displayed higher levels of coordination with the confederate at both short and long time scales. These findings demonstrate that the visual-motor coordination capabilities of trained dancers allow them to better synchronize with other individuals performing dance-like movements than non-dancers. Further investigation of similar tasks may help to increase the understanding of visual-motor entrainment in general, as well as provide insight into the effects of focused training on visual-motor and interpersonal coordination
    corecore