198 research outputs found

    Investigation of Biological Systems Using Synchrotron X-ray Light Sources.

    Full text link
    In this thesis metals were studied in several biological systems using XRF microscopy and XAS spectroscopy. In chapter two, I examined the budding yeast Sacchromyces cervisiae using XRF microscopy. Using fluorescent stains to identify the vacuole and the nucleus, we were able to determine which elements localized where. We found that phosphorus fluorescence was a reasonable surrogate for the nucleus of the cell. Zinc and iron localized to both the vacuole and the nucleus. Sulfur and potassium typically have smooth distributions, and calcium and manganese localized in the vacuole. These results establish the groundwork for the subcellular elemental distributions of yeast grown under normal conditions, allowing for the later exploration of the subcellular localizations of elements under other conditions. In chapter three, we examined the effects of cadmium treatment on yeast. The cadmium-treated yeast showed dramatic localizations of copper in the bud and bud neck. The other elements did not show any significant changes in localization compared to the yeast that had not been exposed to cadmium. While iron and zinc did not change their localizations, they did show a significant increase in concentration. X-ray absorption spectroscopy of zinc in yeast cell paste treated with cadmium shows a shift towards sulfur ligation compared to cell paste that was not treated with cadmium. These results suggest that the cellular damage caused by cadmium is a result of an increase in the cell’s free copper, leading to increased oxidative stress. Chapter 4 uses XRF microscopy to examine human erythrocytes that have been infected with the malaria parasite. Infected erythrocytes were found to accumulate zinc 3-6 fold in excess when compared to uninfected cells. This accumulated zinc was found to be localized close to, but not overlapping with, the iron localization of the hemozoin crystal. In addition to the increase in zinc, phosphorus, sulfur and potassium were found to increase substantially, while iron showed a small but likely significant increase upon infection.Ph.D.ChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/57645/2/mjkidd_1.pd

    Laser microsculpting for the generation of robust diffractive security markings on the surface of metals

    Get PDF
    AbstractWe report the development of a laser-based process for the direct writing (‘microsculpting’) of unique security markings (reflective phase holograms) on the surface of metals. In contrast to the common approaches used for unique marking of the metal products and components, e.g., polymer holographic stickers which are attached to metals as an adhesive tape, our process enables the generation of the security markings directly onto the metal surface and thus overcomes the problems with tampering and biocompatibility which are typical drawbacks of holographic stickers. The process uses 35ns laser pulses of wavelength 355nm to generate optically-smooth deformations on the metal surface using a localised laser melting process. Security markings (holographic structures) on 304-grade stainless steel surface are fabricated, and their resulted optical performance is tested using a He–Ne laser beam of 632.8nm wavelength

    Lexan Linear Shaped Charge Holder with Magnets and Backing Plate

    Get PDF
    A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration

    Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sequence of the pathogen <it>Mycobacterium tuberculosis </it>(<it>Mtb</it>) strain <it>H37Rv </it>has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other <it>Mtb </it>strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of <it>Mtb </it>pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of <it>Mtb </it>and <it>M. bovis</it>, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, <it>Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes</it>, and <it>Bifidobacterium longum</it>.</p> <p>Results</p> <p>Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four.</p> <p>Conclusions</p> <p>Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of <it>Mtb </it>in a comparative context, and are available online and through TBDB.org.</p

    The plausibility of a role for mercury in the etiology of autism: a cellular perspective

    Get PDF
    Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed

    Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

    Get PDF
    The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care

    A convergent evolutionary pathway attenuating cellulose production drives enhanced virulence of some bacteria

    Get PDF
    Bacteria adapt to selective pressure in their immediate environment in multiple ways. One mechanism involves the acquisition of independent mutations that disable or modify a key pathway, providing a signature of adaptation via convergent evolution. Extra-intestinal pathogenic Escherichia coli (ExPEC) belonging to sequence type 95 (ST95) represent a global clone frequently associated with severe human infections including acute pyelonephritis, sepsis, and neonatal meningitis. Here, we analysed a publicly available dataset of 613 ST95 genomes and identified a series of loss-of-function mutations that disrupt cellulose production or its modification in 55.3% of strains. We show the inability to produce cellulose significantly enhances ST95 invasive infection in a rat model of neonatal meningitis, leading to the disruption of intestinal barrier integrity in newborn pups and enhanced dissemination to the liver, spleen and brain. Consistent with these observations, disruption of cellulose production in ST95 augmented innate immune signalling and tissue neutrophil infiltration in a mouse model of urinary tract infection. Mutations that disrupt cellulose production were also identified in other virulent ExPEC STs, Shigella and Salmonella, suggesting a correlative association with many Enterobacteriaceae that cause severe human infection. Together, our findings provide an explanation for the emergence of hypervirulent Enterobacteriaceae clones

    Selective Depletion of Staphylococcus aureus Restores the Skin Microbiome and Accelerates Tissue Repair after Injury

    Get PDF
    Our skin is home to a diverse community of commensal microorganisms integral to cutaneous function. However, microbial dysbiosis and barrier perturbation increase the risk of local and systemic infection. Staphylococcus aureus is a particularly problematic bacterial pathogen, with high levels of antimicrobial resistance and direct association with poor healing outcome. Innovative approaches are needed to selectively kill skin pathogens, such as S aureus, without harming the resident microbiota. In this study, we provide important data on the selectivity and efficacy of an S aureus–targeted endolysin (XZ.700) within the complex living skin/wound microbiome. Initial cross-species comparison using Nanopore long-read sequencing identified the translational potential of porcine rather than murine skin for human-relevant microbiome studies. We therefore performed an interventional study in pigs to assess the impact of endolysin administration on the microbiome. XZ.700 selectively inhibited endogenous porcine S aureus in vivo, restoring microbial diversity and promoting multiple aspects of wound repair. Subsequent mechanistic studies confirmed the importance of this microbiome modulation for effective healing in human skin. Taken together, these findings strongly support further development of S aureus–targeted endolysins for future clinical management of skin and wound infections
    • …
    corecore