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While meta-analysis has demonstrated increased statistical power and more robust estimations in 

studies, the application of this commonly accepted methodology to cytometry data has been 

challenging. Different cytometry studies often involve diverse sets of markers. Moreover, the 

detected values of the same marker are inconsistent between studies due to different experimental 

designs and cytometer configurations. As a result, the cell subsets identified by existing auto-

gating methods cannot be directly compared across studies. We developed MetaCyto for 

automated meta-analysis of both flow and mass cytometry (CyTOF) data. By combining clustering 

methods with a silhouette scanning method, MetaCyto is able to identify commonly labeled cell 

subsets across studies, thus enabling meta-analysis. Applying MetaCyto across a set of ten 

heterogeneous cytometry studies totaling 2,926 samples enabled us to identify multiple cell 

populations exhibiting differences in abundance between demographic groups. Software is 

released to the public through Bioconductor (bioconductor.org/packages/MetaCyto).

INTRODUCTION

Meta-analysis of existing data across different studies offers multiple benefits. The 

aggregated data allows researchers to test hypotheses with increased statistical power. The 

involvement of multiple independent studies increases the robustness of conclusions drawn. 

In addition, the complexity of aggregated data allows researchers to test or generate new 

hypotheses. These benefits have been shown by many studies in areas such as genomics, 

cancer biology and clinical research and have led to important new biomedical findings 

(Boulé et al., 2001; Kodama et al., 2012; Sutton et al.; Wirapati et al., 2008). For example, 

one study showed the correlation between neo-antigen abundance in tumors and patient 

survival by performing meta-analysis of RNA sequencing data from The Cancer Genome 

Atlas (TCGA) (Brown et al., 2014). In another study, meta-analysis of genome-wide 

association studies identified novel loci that affect the risk of type 1 diabetes (Barrett et al., 

2009).

With the recent advances in high-throughput cytometry technologies the immune system can 

be characterized at the single cell level with up to 45 parameters, minimizing the technical 

limitations and allowing capture of more valuable information from immunology studies 

(Bandura et al., 2009; Perfetto et al., 2004; Shapiro, 1983). Open science initiatives have led 

to more of this type of research data being accessible, and the availability of shared 

cytometry data, including data from flow cytometry and mass cytometry (CyTOF), is 

growing exponentially. Notably, the ImmPort database (www.immport.org), a repository for 

immunology-related research and clinical trials, provides numerous studies with thousands 

of cytometry datasets (Bhattacharya et al.). However, meta-analysis of cytometry datasets 

remains particularly challenging. Different studies use diverse sets of protein markers and 

fluorophore/isotope combinations. The detected values of the same marker are inconsistent 

between studies because of different cytometer configurations or operators. In addition, the 

high dimensionality of cytometry data, especially CyTOF data, makes manual gating based 

meta-analysis difficult and time-consuming.

Multiple computational methods have been proposed to automate the analysis of cytometry 

data, such as FlowSOM (Van Gassen et al., 2015), FlowMeans (Aghaeepour et al., 2011) 
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and CITRUS (Bruggner et al., 2014). Although they are effective in analyzing data from a 

single study (Aghaeepour et al., 2013; Weber and Robinson, 2016), several limitations have 

prevented their use in meta-analysis. First, the results of these methods cannot be directly 

compared across studies. The cell subsets identified by these methods are usually labeled 

with anonymous identifiers with no cell-specific annotation, making it impossible to identify 

common cell populations across different studies. In addition, many clustering methods are 

sensitive to parameter choices. For example, FlowSOM, FlowMeans and SPADE (Qiu et al., 

2011) require users to pre-specify the number of clusters. As a result, extensive parameter 

tuning and manual inspection are required for every cytometry dataset. In meta-analysis 

where large numbers of input datasets could be involved, these manual selected choices 

become a major technical burden.

In this study, we developed MetaCyto to enable automated meta-analysis of cytometry 

datasets, including data from both conventional flow and CyTOF cytometry data. MetaCyto 

is able to accurately identify common cell populations across studies without parameter 

tuning requirements. It then applies hierarchical models to robustly estimate the effects of 

factors of interest, such as age, ethnicity or vaccination, on the cell populations using data 

across all input studies.

To test the utility of MetaCyto, we performed a joint analysis of 10 human immunology 

cytometry datasets contributed by four different institutions (Ledgerwood et al., 2012; 

Obermoser et al., 2013; Wertheimer et al., 2014; Whiting et al., 2015). Altogether, this 

analysis spanned 2926 whole blood or peripheral blood mononuclear cells (PBMC) samples 

from 984 healthy subjects, which were acquired using either flow cytometry or CyTOF with 

a diverse set of markers. Among these 984 subjects, over 90 percent were White or Asian. 

While it is well known that characteristics of multiple immune system-related diseases, such 

as HIV(Achhra et al., 2010), systemic lupus erythematosus (Petri, 2002) and hepatitis C 

(Golden-Mason et al., 2008), vary between the two ethnic groups, the heterogeneity of the 

immune system among the human population has made studying these differences difficult 

(Brodin et al., 2015; Li et al., 2016). We hypothesized that a meta-analysis approach could 

lead to a better understanding of differences in the immune system between ethnic groups. 

Using MetaCyto, we not only confirmed a known difference, but also identified new cell 

types whose frequencies differ between White and Asian.

RESULTS

MetaCyto identifies common cell subsets across studies

Our meta-analysis of cytometry data follows four steps: data aggregation, data pre-

processing, identification of common cell subsets across studies, and statistical analysis 

(Figure 1A). The third step, identification of common cell subsets across studies, has been 

one of the main technical challenges preventing automated meta-analysis. Therefore, while 

all four steps are automated and covered in the MetaCyto software system and documented 

in the online methods, here we primarily focus on describing our identification and relating 

of common cell subsets across studies.

Hu et al. Page 3

Cell Rep. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MetaCyto employs two automated pipelines, unsupervised analysis and guided analysis, to 

identify common cell subsets across studies. The unsupervised analysis pipeline identifies 

cell subsets in a fully automated way. Cytometry data in each study is first clustered using an 

existing clustering method (Figure 1B Top). FlowSOM (Van Gassen et al., 2015) was 

implemented as the default clustering method due to its speed and performance. However, 

any other clustering method, such as hierarchical clustering or FlowMeans, could be 

substituted as well. At this stage, clusters are labeled with non-informative labels, such as 

C1, C2, C3, which cannot be related across studies. For example, C1 in study 1 and C1 in 

study 2 represent entirely different cell populations.

A threshold is then chosen to bisect the distribution of each marker into positive and 

negative regions, needed to label each cluster in a biologically meaningful way (Figure 1B 

Middle). The selection of a threshold is easy when a clear bi-modal distribution is present, 

but becomes challenging in other cases. We implemented a Silhouette scanning method, 

which bisects each marker at the threshold maximizing the average silhouette, a widely used 

way of describing the quality of clusters (Rousseeuw, 1987). We compared Silhouette 

scanning against 8 other bisection methods and found it to be superior (Figure S1 and Table 

S1).

Clusters are then labeled for each of the markers based on the following two rules: first, if 

the marker levels of 95% of cells in the cluster are above or below the threshold, the cluster 

will be labeled as positive or negative for the marker, respectively. Otherwise, the cluster 

will not be labeled for the marker. For example in Figure 1B, both C2 and C1 in study 2 will 

be labeled as CD8+ CD4-; second, if a marker is positive or negative in 95% of all cells, the 

marker is not used to label any clusters. For example, CD45, which is expressed by all 

immune cells, will not be used to label any cell clusters in the blood. The two rules are used 

to reduce redundancy and ensure that only the informative markers are used for labeling.

Next, clusters with the same labels are merged into a square shaped cluster (Figure 1B 

Bottom). In cytometry data with higher dimensions, clusters are hyper-rectangles. Following 

this stage, common cell subsets across studies can be rigorously identified and annotated. 

For example, the CD4- CD8+ clusters in both study 1 and study 2 correspond to CD8+ T 

cells.

The guided analysis pipeline identifies cell subsets using pre-defined cell definitions, thus 

allowing for the search of specific cell subsets defined by immunologists. After bisecting 

each marker into positive and negative regions, cells fulfilling the pre-defined cell definitions 

are identified. For example, the CD3+ CD4+ CD8- (CD4+ T cells) cell subset corresponds 

to the cells that fall into the CD3+ region, CD4+ region and CD8- region concurrently 

(Figure 1C). Notice that both CD45RA+ and CD45RA- populations are included in the cell 

subset, because the cell definition does not specify the requirement for CD45RA expression. 

However, researchers could easily alter the cell definition to CD3+ CD4+ CD8- CD45RA+ 

to find the CD45RA+ cell subset.
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Evaluating the guided analysis pipeline

A successful meta-analysis of cytometry data requires cell populations to be identified 

accurately from each study. To evaluate if the guided analysis pipeline of MetaCyto can 

accurately identify cell subsets from a single study, we downloaded a set of PBMC 

cytometry data (SDY478) from ImmPort, with which the original authors identified 88 cell 

types. Correspondingly, we specified the 88 cell definitions (Table S2) based on the author’s 

gating strategy and identified these cell subsets for each cytometry sample using the guided 

analysis pipeline in MetaCyto. We compared the proportions of all cell subsets estimated by 

MetaCyto with the original manual gating results and found that MetaCyto estimations are 

highly consistent with the manual gating result (Figure 2A-C). We compared our estimations 

to two existing methods, flowDensity (Malek et al., 2015) and ACDC (Lee et al., 2017), 

which can also identify pre-defined cell populations. Our results suggest that MetaCyto’s 

quantification of both major and rare populations were more accurate than FlowDensity’s 

(Figure 2D,E). Although ACDC and MetaCyto results had the same correlation with manual 

gating, ACDC tended to over-estimate the cell abundance (Figure S2A,B). In addition, a 

relatively shorter computational time of MetaCyto (around 3 minutes) compare to ACDC 

(over 2 hours) makes it advantageous in analyzing a large number of datasets.

Evaluating the unsupervised analysis pipeline

We then tested the performance of the unsupervised analysis pipeline of MetaCyto. In the 

unsupervised analysis pipeline, cell clusters are first identified by an existing clustering 

algorithm. The subsets are then labeled using informative markers and are merged into 

hyper-rectangle clusters based on the labeling result (Figure 1B). To learn how such a merge 

affects the quality of clusters, we evaluated the results of two clustering algorithms, 

FlowSOM (Van Gassen et al., 2015) and FlowMeans (Aghaeepour et al., 2011), with and 

without the merging step. Multiple studies have been conducted to evaluate the performance 

of existing clustering method for cytometry data (Aghaeepour et al., 2013; Weber and 

Robinson, 2016). The most recent (Weber and Robinson, 2016) compared 15 clustering 

methods and found FlowSOM generally outperformed other methods after manual tuning.

We downloaded an evaluation dataset, West Nile virus dataset (FlowCAP WNV), used by 

Weber et al (Weber and Robinson, 2016) and applied FlowSOM. The clustering result is 

then labeled and merged. Since FlowSOM requires a pre-specified cluster number (K), we 

did multiple runs with K ranging from 10 to 90. F-measure is used to evaluate the quality of 

the clusters. We found that the quality of clusters is comparable before and after merging 

when K equals to 10. However, the performance of FlowSOM drops when K increases. The 

subsequent merging step prevented FlowSOM performance to deteriorate (Figure 2F). We 

then looked at the total number of clusters identified before and after merging. As expected, 

FlowSOM identified the same number of clusters specified by K. However, when running 

the merging step after FlowSOM, the total number of clusters no longer increases after a 

certain point (Figure 2G). The same results were obtained with FlowMeans (Aghaeepour et 

al., 2011) (Figure S2C,D).

To see if such benefit of the merging step only exists in datasets where the intrinsic number 

of cell subsets is small, we applied the same methodology in the normal donor (ND) dataset 
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from FlowCAP competition (Aghaeepour et al., 2013), where more cell subsets can be 

identified. Consistent with results from WNV dataset, the merging step is able to prevent the 

over-partitioning in the ND dataset as well (Figure S2E-F).

The results suggest that MetaCyto is able to merge small clusters in a biologically 

meaningful way, preventing over-partitioning of the cell subsets, thus allowing the clustering 

analysis to be performed without tuning any parameters.

Meta-analysis using MetaCyto confirms previous findings

After evaluating the performance of MetaCyto in analyzing cytometry data from single 

studies, we next tested the ability of MetaCyto in yielding consistent results from combining 

multiple studies. We applied MetaCyto to identify cell types whose frequencies are different 

between age, gender and ethnic groups. We downloaded 10 studies from ImmPort 

containing cytometry data. These ten studies had been contributed from four different 

institutions, where 86 panels containing 74 different markers were used (Figure 3 and Table 

S3). Altogether, the datasets contain 2926 whole blood or PBMC samples from 984 healthy 

subjects and were acquired using either flow cytometry or CyTOF. We obtained the 

demographic information, including age, gender and ethnicity, directly from the metadata 

associated with the studies. The subjects are proportionately distributed by gender, with 

slightly more female than male. The age span ranges from 19 to 90 years. The subjects come 

from five different defined ethnic groups. Among them, over 90% were White or Asian 

(Figure S3).

We used both unsupervised and guided MetaCyto analysis pipelines in parallel to identify 

cell subsets. For the latter, we used 23 cell type definitions from the Human 

ImmunoPhenotyping Consortium (HIPC) (Finak et al., 2016), ranging from effector memory 

T cells to monocytes (Table S4). We then estimated the effect size of age, gender and 

ethnicity on the cell type proportions using hierarchical statistical models.

Because the 10 studies differ in multiple aspects, including the sample size, the cytometry 

experimental design (Figure 3) and the distribution of demographics (Figure S3), it is 

important to determine if results from these studies can be combined in a meta-analysis. We 

first performed a ten-fold leave-one-out analysis. Each time, we left one of the 10 studies out 

and estimated the effect sizes of age, gender and ethnicity using the rest nine studies. We 

found that the leave-one-out analysis agree well with the full meta-analysis (correlation 

ranges from 0.76 to 1, Table S5), suggesting that the meta-analysis results are not dominated 

by one study. In addition, we performed Cochran’s Q tests on the results from 10 studies. 

The tests did not identify significant heterogeneity between studies (p values range from 

0.22 to 1).

We then validated our results using the effect sizes of age and gender, previously well 

characterized in other studies (Carr et al., 2016; Whiting et al., 2015). We tested whether 

results obtained with MetaCyto could replicate results from a previous independent study 

(Carr et al., 2016). Among the 23 cell types identified by the guided analysis pipeline, 14 

overlapped with the cell types included in the Carr study. We compared the effect size of age 

and gender on the proportion of these 14 cell types, between MetaCyto on the 10 studies, 
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and the independent results from Carr, et al. We found that results agree well with each other 

on both the effect size of age (r = 0.69, p = 0.006, Figure 4A) and gender (r = 0.71, p = 

0.004, Figure 4B). The result, together with results from the leave-one-out analysis and 

Cochran’s Q tests, suggest that data from the 10 studies can be analyzed together in a meta-

analysis using MetaCyto.

The only discrepancy between our analysis and Carr study was the effect of age on CD8+ T 

cells (Figure 4A). Our result showed that the proportion of CD8+ T cells significantly 

decreases with age, while Carr study reported an increase with age. We visually inspected 

MetaCyto’s auto-gating, and ruled out such disagreement being caused by gating errors in 

our study (Figure 4C). The forest plot showed that our finding was consistent across 

cytometry panels (Figure 4D). In the literature, one study found that CD8+ T cell proportion 

decrease with age (Yan et al.) while another study found no association between CD8+ T 

cells and age (Uppal et al., 2003). These discrepancies suggest that the effect of age on 

CD8+ T cells is highly variable and environment specific factors might be contributing to 

these results. Future studies are needed to identify the exact factors.

Meta-analysis using MetaCyto identifies previously unreported differences in immune cells 
between ethnic groups

Our meta-analysis using the guided pipeline in MetaCyto revealed five cell types to be 

significantly different between the Asian and White. Asians have higher percentages of total 

CD4+ T cells and CD4+ central memory T cells, and lower percentages of natural killer 

(NK) cells, naïve CD8+ T cells and total CD8+ T cells (Figure 5A). Among these findings, 

only the difference of total CD4+ T cells has been reported previously(Howard et al., 1996). 

MetaCyto was able to identify this ethnic difference consistently across all cytometry panels 

(Figure 5B). Combining the results from all panels allowed us to confirm the difference with 

high confidence (p = 1.2×10−7).

In all ten studies, Asian individuals make up less than 25% of the cohorts. To test if our 

findings are affected by the data imbalance, we down-sampled White individuals so that the 

number of White and Asian individuals are equal. We found that the effect sizes are 

consistent before and after down sampling (correlation = 0.92). Importantly, the same ethnic 

differences (CD4+ T cells, NK cells, naïve B cells, CD4 central memory cells and CD8 T 

cells) are observed after down sampling (Figure S4).

To further confirm the four previously unreported ethnic differences, we inspected the 

results from MetaCyto in detail. First, we visualized the identified cell populations in all 

studies, and confirmed that our results were not artifacts of automated gating (Figure 6 A-

D). Second, as described in the previous section, we tested if these ethnic differences were 

consistent across cytometry panels. Cochran’s Q test did not identify significant 

heterogeneity between cytometry panels (p-values equal to 0.86, 0.27, 0.71 and 0.90 for NK 

cells, naïve B cells, CD4 central memory cells and CD8 T cells respectively). Visual 

inspection of the forest plots also confirmed that the results were consistent in most of the 

cytometry panels (Figure 6E-H).
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Results from the unsupervised analysis identified multiple cell types, other than the 23 types 

used in the guided analysis, whose abundance were different between Asian and White 

(Table S6). As one example, we found that the proportion of a sub-population of CD8+ T 

cells, the CD3+ CD4- CD45RA+ CD8+ CD85J- cell population, is significantly higher in 

Asians than in Whites (Figure S5). A closer look at the forest plot revealed that the 

association between this population and ethnicity was not at a significant level in most 

studies taken independently. However, by combining the results from multiple studies, we 

were able to identify this association with high confidence (p=0.0049).

DISCUSSION

With the collection of publically available cytometry studies rapidly growing, researchers 

can often identify multiple studies that were designed or can be re-purposed to answer a 

common research question. Meta-analysis of these studies allows researchers to answer the 

research question with a more robust conclusion and higher statistical power. Many 

cytometry studies that are publically available include hundreds of high dimensional 

cytometry data. Performing meta-analysis manually on these studies is not only time 

consuming, but also prone to human error and bias. In this study, we developed and 

demonstrated a computational tool called MetaCyto, which allows fully automated meta-

analysis of both CyTOF and flow cytometry data.

When performing a meta-analysis of cytometry data, a big challenge lies in the identification 

of common cell subsets across heterogeneous cytometry studies. In MetaCyto, we 

implemented two complementary analysis pipelines to automate the cell identification 

process. The guided analysis pipeline is able to identify cell populations using user-defined 

cell definitions. For example, regulatory T cells can easily be identified using the definition 

“CD3+ CD4+ Foxp3+”. Such an approach allows researchers to incorporate their domain 

knowledge into the analysis, making the result more biologically relevant. In addition to the 

guided analysis pipeline, MetaCyto also allows researchers to identify cell populations in an 

unsupervised manor. Due to the high dimensionality of cytometry data, an exhaustive grid 

search will lead to an astronomical number of cell subsets. For example, if we divide each 

marker into positive and negative regions, 45 markers in a CyTOF experiment have 245 

combinations. To avoid such a situation, the unsupervised pipeline in MetaCyto first 

identifies cell clusters using a clustering method. Successful efforts were made by the 

community to develop efficient clustering methods for flow cytometry data analysis. We 

built MetaCyto to be fully compatible with existing clustering methods. MetaCyto is able to 

merge and transform the clusters from existing clustering algorithms in a biologically 

meaningful way, therefore improving result quality and enabling further meta-analysis of 

many studies.

Based on the test result, we recommend over-clustering the data first, followed by the 

merging of the clusters by MetaCyto. Such a strategy not only makes the method tuning 

free, but also is more computationally efficient than traditional auto-tuning methods, which 

require running the clustering algorithm multiple times with different parameters.
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In MetaCyto, the distribution of each marker is bisected into positive and negative regions 

using a silhouette-scanning method. However, some markers may show tri-modal 

distributions. Although the silhouette-scanning method can easily be modified to divide the 

distribution into three regions (low-medium-high), only bisection is used in MetaCyto for 

the following reasons. First, it is known that multiple technical factors, such as auto-

fluorescence, compensation, transformation and non-specific binding of antibodies, can lead 

to false tri-modal distributions (Morice et al., 2004; Ray and Pyne, 2012). In these cases, the 

low-medium-high regions do not represent distinct cell populations. Second, upon 

examining multiple cytometry studies, we found that although some markers (e.g. CD8, 

CD45RA, CD127) show tri-modal distributions in certain cytometry studies, they show bi-

model distributions in other studies. Such inconsistency makes it difficult to reliably relate 

cell subsets across studies. Finally, our test result shows that bisection using silhouette 

scanning is able to identify the population that is truly positive for a marker even when the 

distribution is not bi-modal.

It should be noted that abnormally “bright” particles, such as beads and dead cells, will 

affect the silhouette scanning method. Therefore, we recommend gating out the “bright” 

particles before performing the meta-analysis. The MetaCyto R package allow users to 

perform pre-gating using a user defined strategy, such as “PI- FSC+” for flow cytometry 

data and “Bead- DNA+” for CyTOF data.

A recent study (Diggins et al., 2017) have proposed a novel method to annotate cell subsets 

using maker enrichment modeling (MEM) scores. Although the approach is highly effective 

in individual datasets, several limitations exist for its use in meta-analysis. First, the 

enrichment score is context dependent and varies between studies, making it difficult to 

identify common cell types across studies. Second, the MEM method is designed to label 

cell populations rather than identifying cell populations. As a result, if a clustering algorithm 

identifies a cell subset in dataset 1 but not in dataset 2, the cell subset will be missed in a 

meta-analysis. In contrast, MetaCyto identifies the cell subset in both datasets, allowing 

meta-analysis.

By combining samples from multiple studies, meta-analysis is able to increase the statistical 

power of hypothesis testing. One concern is that such approach may reach significant p 

values of very weak biological phenomenon. Therefore, We would always encourage users 

of MetaCyto to not just look at the statistics significance, but also the effect size. Our meta-

analysis identified 4 ethnic differences in immune cells, which to our knowledge have not 

been reported previously. The findings not only have significant p values, but also have large 

effect sizes (around 0.3). The effect sizes are comparable with the effect size of CD4 T cells, 

a well-characterized ethnic difference (Howard et al., 1996), suggesting that these findings 

reflect important biological differences in the immune system.

There are several potential limitations of the current study. In the unsupervised analysis 

pipeline of MetaCyto, although the merging step makes the clustering result more robust, it 

may eliminate some small cell populations of biological meaning. To overcome this 

limitation, researchers can use a more sensitive method, such as CITRUS (Bruggner et al., 

2014), to identify the cell subsets of interest from a single study. They can then craft cell 
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definitions for those subsets and use the guided analysis pipeline of MetaCyto to perform 

meta-analysis across studies. Another limitation is that our meta-analysis only established 

correlations, rather than causations, between cell populations and ethnicity. In-depth studies 

are needed to further validate our findings and to identify the genetic or environmental 

causes of these differences.

In summary, we developed MetaCyto, a computational tool that allows the automated meta-

analysis of cytometry data. Applying MetaCyto to cytometry data from 10 human 

immunology studies allowed us to thoroughly characterize differences in the immune system 

between Asian and White populations. Other than the previously known differences in 

CD4+ T cell abundance, we identified previously unreported cell populations whose 

abundance were significantly different between the two ethnicities, and demonstrated that 

the findings are consistent across multiple independent studies. Our findings can help us 

better understand the heterogeneity of the human immune system in the population. They 

also serve as a starting point for future studies to reveal the mechanisms behind ethnic 

discrepancies in immune-related diseases

EXPERIMENTAL PROCEDURES

Data Aggregation

Flow cytometry data and CyTOF data from SDY112, SDY167 (Ledgerwood et al., 2012), 

SDY180 (Obermoser et al., 2013), SDY311, SDY312, SDY314, SDY315, SDY420 (Whiting 

et al., 2015), SDY478 and SDY736 (Wertheimer et al., 2014) were downloaded from 

ImmPort web portal. Only fcs files from pre-vaccination blood samples of healthy adults 

were included in the meta-analysis. Parameters, including antibodies and fluorescence or 

isotope labels, used in each fcs file were then identified using the fcsInfoParser function in 

MetaCyto. The fcs files were then organized into panels, which are defined as a collection of 

fcs files from the same study that have the same set of parameters.

We obtained the demographic information directly from the metadata associated with each 

study. Specifically, the age, gender and ethnicity information were obtained from the 

“Subject_2_Flow_cytometry_result.txt” or “Subject_2_CyTOF_result.txt” tables. The 

ethnicity categories were standardized according to the Standards for the Classification of 

Federal Data on Race and Ethnicity (Federal Registrar, 1997) by the ImmPort data curation 

team.

Manual gating results for both FlowCAP WNV data (ID number FR-FCM-ZZY3) were 

downloaded from the FlowRepository link: community.cytobank.org/cytobank/experiments/

4329.

All data sets were downloaded between September 1, 2016 and February 1, 2017.

Data Pre-processing

Flow cytometry data from ImmPort were compensated for fluorescence spillovers using the 

compensation matrix supplied in each fcs file. All data from ImmPort were arcsinh 

transformed. For flow cytometry data, the formula f(x) = arcsinh (x/150) was used. For 
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CyTOF data, the formula f(x) = arcsinh (x/8) was used. All transformation and 

compensation were done using the preprocessing or preprocessing.batch function in 

MetaCyto.

Cytometry data FlowCAP WNV was transformed and subset to only include protein 

markers. The pre-processing was doing using the same code provided by the Weber study 

(Weber and Robinson, 2016) : github.com/lmweber/cytometry-clustering-comparison

Bisecting Marker Distributions using Silhouette scanning

The range of a marker was divided into 100 intervals using 99 breaks. The distribution was 

bisected at each break and the corresponding average silhouette (Rousseeuw, 1987) was 

calculated. The break giving rise to the largest average silhouette was used as the cutoff for 

bisection.

Identifying cell subsets with the guided analysis pipeline in MetaCyto

Cell definitions were created based on the gating strategies provided by authors of SDY 420 

and SDY478 from ImmPort database or based on the cell definition from the Human 

ImmunoPhenotyping Consortium (Finak et al., 2016). The cell definitions are available in 

the Table S1, S2, S4.

To identify the corresponding cell subsets, Silhouette scanning was used to bisect the 

distribution of cell markers into positive and negative regions. Cells fulfilling the cell 

definitions were then identified. For example, the CD3+ CD4+ CD8- (CD4+ T cells) cell 

subset corresponds to the cells that fall into the CD3+ region, CD4+ region and CD8- region 

concurrently. The proportion of each cell subset in blood was calculated by dividing the 

number of cells in the subset by the total number of cells in the blood. The procedure is 

performed using the searchCluster or searchCluster.batch function in the MetaCyto package.

Identifying cell subsets with the unsupervised analysis pipeline in MetaCyto

FlowSOM (Van Gassen et al., 2015) or FlowMeans (Aghaeepour et al., 2011) were used to 

identify cell clusters in the cytometry data. Silhouette scanning was used to identify a 

threshold that bisects the distribution of cell markers into positive and negative regions. To 

label the identified cell clusters, the marker levels in each cluster were compared with the 

bisection threshold. If the marker levels of 95% of cells in the cluster are above or below the 

threshold, the cluster will be labeled as positive or negative for the marker, respectively. 

Otherwise, the cluster will not be labeled for the marker. If a marker is positive or negative 

in 95% of all cells, the marker is not used to label any clusters. The procedure is performed 

using the labelCluster function in MetaCyto.

MetaCyto then identifies the corresponding cell subsets using the generated labels, in a 

fashion similar to the guided analysis pipeline. Notice that such a process is equivalent of 

merging cell clusters that have the same labels into a hyper-rectangle shaped cluster. To 

capture all the identified cell subsets, the MetaCyto pools the labels from different studies 

and quantifies the corresponding cell subsets in all studies, as long as the studies contain the 

necessary cell marker. The proportion of each cell subset in blood was calculated by dividing 
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the number of cells in the subset by the total number of cells in the blood. The procedure 

was performed using the searchCluster or searchCluster.batch function in the MetaCyto 

package.

Statistical Analysis

2-level hierarchical regression models were used in the meta-analysis of the 10 human 

immunology studies from ImmPort: the proportion of cell subsets was regressed against age, 

gender and ethnicity (Y ~ age + gender + ethnicity) in each cytometry panel. The effect size 

was defined as the regression coefficient divided by the standard deviation of Y. The overall 

effect size from all cytometry panels was estimated using a random effect model. For data 

from the Carr study, the proportion of a cell population was regressed against age and 

gender. Ethnicity information was missing in the data, therefore was omitted in the 

regression. All statistical analysis was performed using the metaAnalysis function in 

MetaCtyo. The p-value was adjusted using the Benjamini-Hochberg (Author et al., 1995) 

correction.

To test the heterogeneity in Meta-analysis, Cochran’s Q test was performed using the 

cochran.Q function in the Mada package.

In Figure 4A and B, Pearson correlations are calculated and tested against the null 

hypothesis (correlation equals zero) using the cor.test function in R.

In Figure S5B, Shapiro-Wilk test was performed to check the normality assumption using 

the shapiro.test function in R. F test was performed to check the equal variance assumption 

using the var.test function in R. A two-sided unpaired Mann-Whitney test is performed to 

test the difference between two groups using the wilcox.test function in R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
MetaCyto identifies and labels common cell subsets in cytometry data across studies. (A) 

Schematic illustration of the 4 steps MetaCyto uses to perform meta-analysis of cytometry 

data. (B) Schematic illustration of the unsupervised analysis pipeline in MetaCyto. Top: 

Cytometry data from different studies are first clustered using a clustering method, such as 

FlowSOM. Middle: Each marker is bisected into positive and negative regions using the 

silhouette scanning method. Each identified cluster is labeled based on their position relative 

to this threshold. Bottom: Clusters with the same label are merged together into rectangles or 
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hyper-rectangles. (C) An example illustrating the guided analysis pipeline in MetaCyto. 

Each marker in the data is bisected into positive and negative regions using the silhouette 

scanning method. The CD3+ CD4+ CD8- cluster corresponds to cells that fall into CD3+ 

region, CD4+ region and CD8- region at the same time. Red histograms show the 

distribution of markers in CD3+ CD4+ CD8- subset. Grey histograms show the distribution 

of markers of all cells.
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Figure 2: 
Both guided and unsupervised analysis pipelines in MetaCyto accurately identify cell 

populations. (A-C) Scatter plots showing the comparison between proportions of cell types 

estimated by the guided analysis pipeline in MetaCyto and proportions provided by the 

authors of SDY478. All cell populations (A), Natural Killer (NK) cells (B), and effector 

memory CD4+ T cells (C) are included in the plots. Each dot represents the proportion of a 

cell type in a sample. Each color represents a cell type. (D) Scatter plots showing the 

comparison between flowDensity and manual gating. All cell populations are included. (E) 
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The 88 cell types are broken down into rare and major populations based on their mean 

proportion in the manual gating results. The cell types whose mean proportions are less than 

2 percent are defined as rare population, the rest of the cell types are defined as major 

populations. Spearman correlation between MetaCyto or flowDensity’s results and manual 

gating results are calculated to measure the performance. (F,G) FlowSOM is used to cluster 

the West Niles Virus dataset (FlowCAP WNV) with K ranging from 10 to 90 with or 

without the merge step in MetaCyto unsupervised analysis pipeline. F measure (F) and the 

number of clusters (G) are shown in the bar plots. See also Figure S2.
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Figure 3: 
Data from 10 human immunology studies includes highly heterogeneous cytometry panels. 

Eighty-six panels with diverse sets of markers were used in these 10 studies, with the panels 

represented vertically. The specific markers used are represented horizontally. Each panel is 

a unique antibody and fluorophores/isotope combination in a study. A red square in each 

grid element indicates that particular marker was used in a panel.
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Figure 4: 
Meta-analysis using MetaCyto provides consistent results between cytometry panels and 

confirms previous findings. (A-B) Comparison between the effect sizes of age (A) and 

gender (B) estimated by MetaCyto using all 86 panels, against the effect sizes estimated 

using the data from Carr, et al. Red dots represent significant findings by MetaCyto. (C) 2D 

plots visualizing the CD8+ T cells identified by MetaCyto. Red dots represent the cells 

identified by MetaCyto. Grey dots represent other cells in the parental gate. Data from 

SDY420 are shown as an example. Key cell lineage markers are plotted for visual 
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examination, not all of the markers are used for gating in MetaCyto. (D) A forest plot 

showing the effect size of ethnicity (Asian compared to White) on the proportion of CD8+ T 

cells in the blood. The effect sizes were estimated within each panel first, and are combined 

using a random effect model. In A and B, r represents the Pearson correlation; p represents 

the p value of r not equal to 0. In D, p was calculated using a random effect model.
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Figure 5: 
Meta-analysis of cytometry data using MetaCyto identifies multiple ethnic differences in 

immune cells. (A) A plot showing the effect size of ethnicity (Asian compare to White) on 

the proportion of 23 cell types in blood. Dots and whiskers represent the means and 95% 

confidence intervals. (B) A forest plot showing the effect size of ethnicity (Asian compared 

to White) on the proportion of CD4+ T cells in the blood. The effect sizes were estimated 

within each panel first, and are combined using a random effect model. The p values were 

calculated using random effect models, adjusted using Benjamini-Hochberg correction.
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Figure 6: 
Ethnic differences identified by MetaCyto are consistent across cytometry panels. (A-D) 

Representative 2D plots visualizing the cell subsets (NK Cells, Naïve B cells, CD8+ T cells 

and CD4+ central memory T cells) identified by MetaCyto. Red dots represent the cells 

identified by MetaCyto. Grey dots represent other cells in the parental gate. Data from 

SDY420 are shown as examples. Key cell lineage markers are plotted for visual 

examination, not all of the markers are used for gating in MetaCyto. (b) Forest plots 

showing the effect size of ethnicity (Asian compare to White) estimated in each cytometry 
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panel for Naïve B cells, CD8+ T cells and CD4+ central memory T cells. The effect sizes 

were estimated within each panel first, and were combined using a random effect model.
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