60 research outputs found

    Consequences of Atlantification on a Zooplanktivorous Arctic Seabird

    Get PDF
    Global warming, combined with an increasing influence of Atlantic Waters in the European Arctic, are causing a so-called Atlantification of the Arctic. This phenomenon is affecting the plankton biomass and communities with potential consequences for the upper trophic levels. Using long-term data (2005-2020) from a high Arctic zooplanktivorous seabird, the little auk (Alle alle), we tested the hypothesis that the Atlantification affects its diet, body condition and demography. We based our study on data collected in three fjords in West Spitsbergen, Svalbard, characterized by distinct oceanographic conditions. In all three fjords, we found a positive relationship between the inflow of Atlantic Waters and the proportion of Atlantic prey, notably of the copepod Calanus finmarchicus, in the little auk chick diet. A high proportion of Atlantic prey was negatively associated with adult body mass (though the effect size was small) and with chick survival (only in one fjord where chick survival until 21 days was available). We also found a negative and marginally significant effect of the average proportion of Atlantic prey in the chick diet on chick growth rate (data were available for one fjord only). Our results suggest that there are fitness costs for the little auk associated with the Atlantification of West Spitsbergen fjords. These costs seem especially pronounced during the late phase of the chick rearing period, when the energetic needs of the chicks are the highest. Consequently, even if little auks can partly adapt their foraging behaviour to changing environmental conditions, they are negatively affected by the ongoing changes in the Arctic marine ecosystems. These results stress the importance of long-term monitoring data in the Arctic to improve our understanding of the ongoing Atlantification and highlight the relevance of using seabirds as indicators of environmental change.publishedVersio

    Consequences of Atlantification on a Zooplanktivorous Arctic Seabird

    Get PDF
    Global warming, combined with an increasing influence of Atlantic Waters in the European Arctic, are causing a so-called Atlantification of the Arctic. This phenomenon is affecting the plankton biomass and communities with potential consequences for the upper trophic levels. Using long-term data (2005-2020) from a high Arctic zooplanktivorous seabird, the little auk (Alle alle), we tested the hypothesis that the Atlantification affects its diet, body condition and demography. We based our study on data collected in three fjords in West Spitsbergen, Svalbard, characterized by distinct oceanographic conditions. In all three fjords, we found a positive relationship between the inflow of Atlantic Waters and the proportion of Atlantic prey, notably of the copepod Calanus finmarchicus, in the little auk chick diet. A high proportion of Atlantic prey was negatively associated with adult body mass (though the effect size was small) and with chick survival (only in one fjord where chick survival until 21 days was available). We also found a negative and marginally significant effect of the average proportion of Atlantic prey in the chick diet on chick growth rate (data were available for one fjord only). Our results suggest that there are fitness costs for the little auk associated with the Atlantification of West Spitsbergen fjords. These costs seem especially pronounced during the late phase of the chick rearing period, when the energetic needs of the chicks are the highest. Consequently, even if little auks can partly adapt their foraging behaviour to changing environmental conditions, they are negatively affected by the ongoing changes in the Arctic marine ecosystems. These results stress the importance of long-term monitoring data in the Arctic to improve our understanding of the ongoing Atlantification and highlight the relevance of using seabirds as indicators of environmental change.publishedVersio

    Duration of female parental care and their survival in the little auk Alle alle - are these two traits linked?

    Get PDF
    Desertion of offspring before its independence by one of the parents is observed in a number of avian species with bi-parental care but reasons for this strategy are not fully understood. This behaviour is particularly intriguing in species where bi-parental care is crucial to raise the brood successfully. Here, we focus on the little auk, Alle alle, a small seabird with intensive bi-parental care, where the female deserts the brood at the end of the chick rearing period. The little auk example is interesting as most hypotheses to explain desertion of the brood by females (e.g. “re-mating hypothesis”, “body condition hypothesis”) have been rejected for this species. Here, we analysed a possible relationship between the duration of female parental care over the chick and her chances to survive to the next breeding season. We performed the study in two breeding colonies on Spitsbergen with different foraging conditions – more favourable in Hornsund and less favourable in Magdalenefjorden. We predicted that in Hornsund females would stay for shorter periods of time with the brood and would have higher survival rates in comparison with birds from Magdalenefjorden. We found that indeed in less favourable conditions of Magdalenefjorden, females stay longer with the brood than in the more favourable conditions of Hornsund. Moreover, female survival was negatively affected by the length of stay in the brood. Nevertheless, duration of female parental care over the chick was not related to their parental efforts, earlier in the chick rearing period, and survival of males and females was similar. Thus, although females brood desertion and winter survival are linked, the relationship is not straightforward

    The effects of sex, age, season and habitat on diet of the red fox Vulpes vulpes in northeastern Poland

    Get PDF
    The diet of the red fox Vulpes vulpes was investigated in five regions of northeastern Poland by stomach content analysis of 224 foxes collected from hunters. The red fox is expected to show the opportunistic feeding habits. Our study showed that foxes preyed mainly on wild prey, with strong domination of Microtus rodents, regardless of sex, age, month and habitat. Voles Microtus spp. were found in 73% of stomachs and constituted 47% of food volume consumed. Other food items were ungulate carrion (27% of volume), other mammals (11%), birds (9%), and plant material (4%). Sex- and age-specific differences in dietary diversity were found. Adult males and juvenile foxes had larger food niche breadths than adult females and their diets highly overlapped. Proportion of Microtus voles increased from autumn to late winter. Significant habitat differences between studied regions were found. There was a tendency among foxes to decrease consumption of voles with increasing percentage of forest cover. Based on our findings, red foxes in northeastern Poland can be recognized as a generalist predators, consuming easily accessible and abundant prey. However, high percentage of voles consumed regardless of age, sex, month, or habitats may indicate red fox specialization in preying on Microtus rodents

    Trace metals and micronutrients in bone tissues of the red fox Vulpes vulpes (L., 1758)

    Get PDF
    In this study we determined the levels of trace elements (zinc, copper, lead, cadmium and mercury) in three layers of bones of the hip joint (cartilage, compact bone and spongy bone) of 30 red foxes (Vulpes vulpes) from north-western Poland. Concentrations of Cu, Zn, Pb and Cd were determined by atomic absorption spectrophotometry (ICP-AES) in inductively coupled argon plasma using a Perkin-Elmer Optima 2000 DV. Determination of Hg concentration was performed by atomic absorption spectroscopy. In cartilage, compact bone and spongy bone samples from the red fox, median concentrations of the metals studied could be arranged in the following descending series: Zn > Cu > Pb > Cd > Hg, the values ranging from 142 to 0.002 mg/kg dw. There was a significant difference in Cu concentrations, among all the materials analyzed, with much more Cu found in spongy bone than in compact bone. Significant differences were also noted in the case of Hg concentrations in cartilage with compact bone and the spongy bone, and between concentrations of this metal in compact bone and spongy bone. In males, the concentration of Hg in spongy bone was greater than in females. Younger foxes had a higher concentration of this metal in cartilage than adults. The strongest synergistic relationships were observed in spongy bone between the Zn and Cu, Zn and Cd, as well as between Cu and Cd. Statistically significant antagonistic relationships were detected between zinc and lead in compact bone. In addition to monitoring studies conducted on the abiotic environment, an urgent need exists for long-term monitoring of concentrations of heavy metals with long-term effects on living organisms. An important addition is provided by biomonitoring studies on domesticated and free-living mammals, including Canidae

    Definitions and incidence of cardiac syndrome X: review and analysis of clinical data

    Get PDF
    There is no consensus regarding the definition of cardiac syndrome X (CSX). We systematically reviewed recent literature using a standardized search strategy. We included 57 articles. A total of 47 studies mentioned a male/female distribution. A meta-analysis yielded a pooled proportion of females of 0.56 (n = 1,934 patients, with 95% confidence interval: 0.54–0.59). As much as 9 inclusion criteria and 43 exclusion criteria were found in the 57 articles. Applying these criteria to a population with normal coronary angiograms and treated in 1 year at a general hospital, the attributable CSX incidence varied between 3 and 11%. The many inclusion and exclusion criteria result in a wide range of definitions of CSX and these have large effects on the incidence. This shows the need for a generally accepted definition of CSX

    Red Fox Vulpes vulpes (L., 1758) as a Bioindicator of Mercury Contamination in Terrestrial Ecosystems of North-Western Poland

    Get PDF
    In this study, we determined the concentrations of total mercury (Hg) in samples of liver, kidney and skeletal muscle of 27 red foxes Vulpes vulpes (L., 1758) from north-western Poland, and examined the morphometric characteristics of the collected specimens. The analysis also included the relationship between Hg concentration and the fox size, and the suitability of individual organs as bioindicators in indirect evaluation of environmental mercury contamination. Determination of Hg concentration was performed by atomic absorption spectroscopy. In the analysed samples, the Hg concentration was low and the maximum value did not exceed 0.85 mgHg/kg dry weight (dw). There were no significant differences in Hg concentrations in the analysed material between males and females or between immature and adult groups. The median concentrations of Hg in the liver, kidney and skeletal muscle were 0.22, 0.11 and 0.05 mgHg/kg dw, respectively. The correlation coefficients were significant between the concentrations of mercury in the liver, kidney and skeletal muscle (positive) and between the kidney Hg concentration and kidney mass (negative). Taking into account our results and findings of other authors, it may be argued that the red fox exhibits a measurable response to mercury environmental pollution and meets the requirements of a bioindicator

    The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland

    Get PDF
    The red fox (Vulpes vulpes) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002–2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management
    corecore