63 research outputs found

    Overexpression of annexin A1 suppresses pro-inflammatory factors in PC12 cells induced by 1-methyl-4-phenylpyridinium

    Get PDF
    Objective: Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+). Materials and Methods: In this experimental study, cDNA of ANXA1 was cloned and inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells. Results: Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+ treated PC12 cells. Conclusion: ANXA1 may be considered as an agent for prevention of neurodegenerative or inflammatory conditions

    A new immunomodulatory drug delivery system based on αlβ2 and αmβ2 aptamers/Alg-PEI

    Get PDF
    Introduction: Currently, the major concern with biomaterial implantation or tissue grafting is adverse responses of immune system. To remove these barriers, some immunosuppressive drugs are used. But they are associated with adverse effects of systemical delivery. Adhesion of immune cells to foreign body by cell adhesion molecules such as integrins,triggers their activation that leads to immune response. It is demonstrated that this is directed by the ability of dendritic cells (DCs) to drive adaptive immune cells in situ toward adverse reactions and play as a bridge between innate and adaptive immune cells. Thus our focus is on β2 integrin receptors on DC. This study aims to modulate the immune response by inhibiting  β2integrins marker on DC. Methods and Results:to control of DC maturation,αlβ2 and αmβ2 surface markers on DCs should be blocked, hence, the novel aptamer-blocking technique was utilized. For this purpose, immature DCs (iDC) were derived from human peripheral blood monocytes. The antagonist biomolecules (aptamer) that simulated based on inverse of DC markers (αlβ2 and αmβ2) from selex,were embedded into injectable alginate-branched polyethyleneimine by physical entrapment. Then, derived iDCs were treated with synthesized hydrogels in RPMI-1640 media. Interaction of released antagonist aptamers from hydrogels andiDC was analyzed. DC adhesion and subsequently its maturation and potential for adaptive immune cell activation were measured by flowcytometry.When iDCs were treated with hydrogels the levels of DC markers (CD80 and CD86) expression as DC maturation criteria were measured. Expression level ratio for CD80 and CD86 to control sample show significant reduction, about 40 and 50, respectively. Released cytokinesfrom administrated DC by trappedaptamerswithAlg-PEI hydrogel indicate that DC behavior against a chemical foreign body was modulated considering the amount of released cytokines were decreased by10%. Conclusions:The results of this study demonstrated that this presented drug delivery system based on αlβ2 and αmβ2 aptamers can be used as an immune response modulator in health-related application. αlβ2 and αmβ2 aptamers as a new age of state of the art drug technology could be a good substitute for monoclonal antibody drugs to reduce their side effects and draw backs

    Stem Cells from Human Exfoliated Deciduous Tooth Exhibit Stromal-Derived Inducing Activity and Lead to Generation of Neural Crest Cells from Human Embryonic Stem Cells

    Get PDF
    Objective: The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs). These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. Materials and Methods: In this experimental study, we cultured human embryonic stem cells (hESCs) on stromal stem cells from human exfoliated deciduous teeth (SHED) for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs) and NCCs. Results: In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. Conclusion: SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA) and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development

    Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is characterized by severe motor symptoms, and currently there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD; however, its effect in PD motor symptoms has never been addressed. In the present work, an extensive behavior analysis was performed to better characterize the MPTP model of PD and to evaluate the effects of TUDCA in the prevention/improvement of mice phenotype. MPTP induced significant alterations in general motor performance paradigms, including increased latency in the motor swimming, adhesive removal and pole tests, as well as altered gait, foot dragging, and tremors. TUDCA administration, either before or after MPTP, significantly reduced the swimming latency, improved gait quality, and decreased foot dragging. Importantly, TUDCA was also effective in the prevention of typical parkinsonian symptoms such as spontaneous activity, ability to initiate movement and tremors. Accordingly, TUDCA prevented MPTP-induced decrease of dopaminergic fibers and ATP levels, mitochondrial dysfunction and neuroinflammation. Overall, MPTP-injected mice presented motor symptoms that are aggravated throughout time, resembling human parkinsonism, whereas PD motor symptoms were absent or mild in TUDCA-treated animals, and no aggravation was observed in any parameter. The thorough demonstration of improvement of PD symptoms together with the demonstration of the pathways triggered by TUDCA supports a subsequent clinical trial in humans and future validation of the application of this bile acid in PD.National funds, through the Foundation for Science and Technology (Portugal) (FCT), under the scope of the projects PTDC/NEU-NMC/0248/2012, UID/DTP/04138/2013 and POCI-01-0145-FEDER-007038, and post-doctoral grants SFRH/BPD72891/2010 (to A.I.R.), SFRH/BPD/95855/2013 (to M.J.N.), SFRH/BPD/98023/2013 (to A.N.C.), SFRH/BPD/91562/2012 (to A.S.F.) and UMINHO/BI/248/2016 (to S.D.S.). This work has also been developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and by FEDER funds, through the Competitiveness Factors Operational Program (COMPETE)info:eu-repo/semantics/publishedVersio

    Relationship between Potential Sperm Factors Involved in Oocyte Activation and Sperm DNA Fragmentation with Intra-Cytoplasmic Sperm Injection Clinical Outcomes

    No full text
    Objective: The present study aimed to simultaneously evaluate the association between expression of three potential factors [post-acrosomal sheath WW domain-binding protein (PAWP), phospholipase Cζ (PLCζ), and truncated form of the kit receptor (TR-KIT)] as candidates of oocyte activation with fertilization rate and early embryonic development. Materials and Methods: In this experimental study, semen samples were collected from 35 intra-cytoplasmic sperm injection (ICSI) candidates and analyzed according to World Health Organization criteria (2010). Each sample was divided into two parts. The first part was processed for insemination by density-gradient centrifugation (DGC) and the second part was prepared for assessment of sperm morphology (Papanicolaou staining), DNA fragmentation [transferase dUTP nick end labeling (TUNEL)], and three Sperm-borne oocyte-activating factor (s) (SOAFs)-PLCζ, PAWP, and TR-KIT. Results: Significant positive correlations existed between the percentages of PLCζ, PAWP, and TR-KIT with fertilization rate. In addition, significant negative correlations existed between the percentage of DNA fragmentation with the percentages of PLCζ and PAWP. We did not find a relationship between percentages of PLCζ, PAWP, and TR-KIT with embryo quality and pregnancy rate (P>0.05). There was a significant negative correlation between percentage of DNA fragmentation with fertilization and embryo quality. Conclusion: Oocyte activation was associated with the studied sperm factors (PAWP, PLCζ, and TR-KIT). These factors might hold the potential to be considered as diagnostic factors in the assessment of semen samples to evaluate their potential to induce oocyte activation. In addition, we observed a significant association between DNA fragmentation with fertilization, as well as embryo quality and expression of PAWP and PLCζ, which indicated that men with high degrees of DNA fragmentation might require artificial oocyte activation. Whether such action should take place, and its cost and benefits should be evaluated in the future

    siRNA inhibition and not chemical inhibition of Suv39h1/2 enhances pre-implantation embryonic development of bovine somatic cell nuclear transfer embryos.

    No full text
    The efficiency of somatic cell nuclear transfer (SCNT) is low due to the strong resistance of somatic donor cells to epigenetic reprogramming. Many epigenetic drugs targeting DNA methylation and histone acetylation have been used in attempts to improve the in vitro and in vivo development of SCNT embryos. H3K9me3 has been shown to be an important reprogramming barrier for generating induced pluripotent stem cells (iPSCs) and SCNT embryos in mice and humans. In this study, we examined the effects of selective siRNA and chemical inhibition of H3K9me3 in somatic donor cells on the in vitro development of bovine SCNT embryos. Chaetocin, an inhibitor of SUV39H1/H2, was supplemented during the culture of donor cells. In addition, the siRNA knockdown of SUV39H1/H2 was performed in the donor cells. The effects of chaetocin and siSUV39H1/H2 on H3K9me3 and H3K9ac were quantified using flow cytometry. Furthermore, we assessed chaetocin treatment and SUV39H1/H2 knockdown on the blastocyst formation rate. Both chaetocin and siSUV39H1/H2 significantly reduced and elevated the relative intensity level of H3K9me3 and H3K9ac in treated fibroblast cells, respectively. siSUV39H1/H2 transfection, but not chaetocin treatment, improved the in vitro development of SCNT embryos. Moreover, siSUV39H1/H2 altered the expression profile of the selected genes in the derived blastocysts, similar to those derived from in vitro fertilization (IVF). In conclusion, our results demonstrated H3K9me3 as an epigenetic barrier in the reprogramming process mediated by SCNT in bovine species, a finding which supports the role of H3K9me3 as a reprogramming barrier in mammalian species. Our findings provide a promising approach for improving the efficiency of mammalian cloning for agricultural and biomedical purposes

    miR-141 and miR-200a, Revelation of New Possible Players in Modulation of Th17/Treg Differentiation and Pathogenesis of Multiple Sclerosis.

    No full text
    One of the main issues in pathogenesis of MS is Th17/Treg imbalance. There are growing interests in nominating miRNAs involved in Th17 cell differentiation, suggesting them as new therapeutic agents that may reduce progression of different autoimmune diseases specially MS.We assessed transcript levels of miR-141 and miR-200a in MS patients, during relapsing and remitting phases. We also investigated possible role of miR-141, miR-200a in inducing differentiation to Th17 cells.Forty RR-MS patient samples including relapsing (n=20) and remitting (n=20) phases were chosen. Expression level of miR-141 and miR-200a were measured by RT-q PCR and compared to healthy control group (n=10). In-silico analyses on miR-141 and miR-200a targetome showed involvement of both miRNAs in T helper cell differentiation pathways including TGF-β, mTOR and JAK/STAT.We observed that percentage of RORγt+ CD4+ T cells increase in relapsing phase while FOXP3+ CD4+ increase in remitting phase of MS patients. Furthermore, both miR-141 and miR-200a show up-regulation in relapsing phase of MS patients compared to remitting and control groups. Interestingly, expression level of target genes of miR-141 and miR-200a, which were assessed through in-silico methods, show down-regulation in relapsing phase of MS patients.According to our results, miR-141 and miR-200a may be key miRNAs in progression of symptoms of MS through inducing differentiation of Th17 cells and inhibiting differentiation to Treg cells. Our data suggest that these miRNAs may probably inhibit negative regulators of Th17 cell differentiation, thus promoting its differentiation

    Apoptotic M540 bodies present in human semen interfere with flow cytometry-assisted assessment of sperm DNA fragmentation and oxidation

    No full text
    International audienceBackground: The use of flow cytometry (FC) to evaluate sperm DNA fragmentation via deoxynucleotidyl transferase terminal fluorescein dUTP nick-end labeling (TUNEL) has shown inconsistencies compared with conventional fluorescent microscopic analyses. It has been hypothesized that the observed discrepancies could be attributed to the presence of apoptotic bodies that can be labeled with merocyanine 540, the so-called M540 bodies. In order to verify this hypothesis and determine the accuracy of our in-house FC-assisted evaluation of spermatozoa parameters, we used FC to evaluate both the fragmentation of sperm DNA using the TUNEL assay and the oxidation of sperm DNA using the 8-OHdG assay on semen samples with or without M540 bodies.Results: We show that the presence of M540 bodies lead to underestimation of both the level of sperm DNA fragmentation and sperm DNA oxidation when using FC assisted detection systems. We also observed that this situation is particularly pertinent in semen samples classified as abnormal with respect to the routine WHO semen evaluation as they appear to contain more M540 bodies than normal samples.Conclusions: We conclude that M540 bodies interfere with both FC-conducted assays designed to evaluate sperm nuclear/DNA integrity. Exclusion of these contaminants in unprepared semen samples should be performed in order to correctly appreciate the true level of sperm DNA/nuclear damage which is known to be a critical male factor for reproductive success

    MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation

    No full text
    Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiation, the role of microRNAs in MS is not completely understood. Thereby, as a step closer, we analyzed the expression profile of miR-9-5p and miR-106a-5p, and protein level of retinoic acid receptor (RAR)-related orphan receptor C (RORC; Th17 master transcription factor) as direct target of miR-106a-5p and forkhead box P3 (FOXP3; Treg master transcription factor) as indirect target of miR-9-5p in CD4+ T cells in two groups of relapsing and remitting in our relapsing-remitting MS (RR-MS) patients. Materials and Methods:Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized to assess the expression of miRNAs and mRNAs, in 40 RR-MS patients and 11 healthy individuals. Thus, FOXP3 and RAR-related orphan receptor γt (RORγt) was assessed in CD4+T-cells by flow cytometry. We also investigated the role of these miRNAs in Th17/Treg differentiation pathway through bioinformatics tools. Results: An up-regulation of miR-9-5p and down-regulation of miR-106a-5p in relapsing phase of MS patients were observed compared to healthy controls. RORC and FOXP3 wereup-regulated in relapsing and remitting phases of MS, respectively. Conclusion: Expression pattern of miR-9-5p and miR-106a-5p and their targets suggest a possible inducing role of miR-9-5p and suppressing role of miR-106a-5p in differentiation pathway of Th17 cells during MS pathogenesis
    • …
    corecore