887 research outputs found

    Biochemical characterization of thermostable cellulase enzyme from mesophilic strains of actinomycete

    Get PDF
    A few mesophilic strains of actinomycete were used for detection, extraction and characterization of cellulase enzymes. These strains responded to produce all the three components of cellulase complex (endoglucanase, exoglucanase and â-glucosidase) in balanced quantities. Cellulase activity was determined on solid medium supplemented with 1% carboxy methyl cellulose (CMC). Production of cellulase was detected by the formation of clear or transparent zone around colonies. The greater size of transparent zone has been found proportional to the higher capabilities of the strains for enzymes. The extraction of cellulase enzyme was done in liquid basal medium. The assay of cellulase was observed by measuring the release of reducing sugar (RS) by DNS method. All the three components of cellulase viz. endoglucanase, exoglucanase and â -glucosidase were assayed in terms of CMCase, FPase and cellobiase, respectively and expressed in International units (IU). These strains were further tested for their ability to produce cellulase complex enzyme by growing on a defined substrates as well as on delignified cellulosics. The optimization for â-glucosidase enzyme was carried out by studying the various parameters viz. effect of pH, incubation period and nitrogen sources.Key words: Cellulase, actinomycete, optimization, reducing sugar, carboxy methyl cellulose

    Development that works, March 31, 2011

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, On March 31, 2011, more than 100 people participated in a conference titled “Development That Works,” sponsored by Boston University’s Frederick S. Pardee Center for the Study of the Longer-Range Future in collaboration with the BU Global Development program. In the pages that follow, four essays written by Boston University graduate students capture the salient points and overarching themes from the four sessions, each of which featured presentations by outstanding scholars and practitioners working in the field of development. The conference agenda and speakers’ biographies are included following the essays.The theme and the title of the conference—”Development That Works”—stemmed from the conference organizers’ desire to explore, from a groundlevel perspective, what programs, policies, and practices have been shown—or appear to have the potential—to achieve sustained, long-term advances in development in various parts of the world. The intent was not to simply showcase “success stories,” but rather to explore the larger concepts and opportunities that have resulted in development that is meaningful and sustainable over time. The presentations and discussions focused on critical assessments of why and how some programs take hold, and what can be learned from them. From the influence of global economic structures to innovative private sector programs and the need to evaluate development programs at the “granular” level, the expert panelists provided well-informed and often provocative perspectives on what is and isn’t working in development programs today, and what could work better in the future

    Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis

    Get PDF
    Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1

    Addition of the mammalian target of rapamycin inhibitor, Everolimus, to consolidation therapy in acute myeloid leukaemia: experience from the UK NCRI AML17 trial

    Get PDF
    As part of the UK NCRI AML17 trial, adult patients with acute myeloid leukemia in remission could be randomized to receive the mammalian target of rapamycin inhibitor everolimus, sequentially with post-induction chemotherapy. Three hundred and thirty-nine patients were randomised (2:1) to receive everolimus or not for a maximum of 84 days between chemotherapy courses. The primary endpoint was relapse-free survival. At 5 years there was no difference in relapse-free survival [29% versus 40%; odds ratio 1.19 (0.9-1.59) P=0.2], cumulative incidence of relapse [60% versus 54%: odds ratio 1.12 (0.82-1.52): P=0.5] or overall survival [45% versus 58%: odds ratio 1.3 (0.94-1.81): P=0.11]. The independent Data Monitoring Committee advised study termination after randomization of 339 of the intended 600 patients because of excess mortality in the everolimus arm without any evidence of beneficial disease control. The delivery of the everolimus dose was variable, but there was no evidence of clinical benefit in patients with adequate dose delivery compared with no treatment. This study suggests that the addition of mammalian target of rapamycin inhibition to chemotherapy provides no benefit

    TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>AKT signaling promotes cell growth, proliferation and survival and is hyperactivated in many cancers. TOR complex 2 (TORC2) activates AKT by phosphorylating it on the 'hydrophobic motif' site. Hydrophobic motif site phosphorylation is needed only for a subset of AKT functions. Whether proliferation of tumor cells depends on TORC2 activity has not been thoroughly explored.</p> <p>Methods</p> <p>We used RNAi-mediated knockdown of rictor to inhibit TORC2 activity in MCF7 and PC3 tumor cells to analyze the importance of TORC2 on proliferation of tumor cells.</p> <p>Results</p> <p>TORC2 inhibition reduced proliferation and anchorage-independent growth of both cell lines. Rictor depleted cells accumulated G1 phase, and showed prominent downregulation of Cyclin D1.</p> <p>Conclusion</p> <p>This study provides further evidence that inhibition of TORC2 activity might be a useful strategy to inhibit proliferation of tumor cells and subsequent tumor growth.</p

    Risdiplam in Type 1 Spinal Muscular Atrophy

    Get PDF
    BACKGROUND: Type 1 spinal muscular atrophy is a rare, progressive neuromuscular disease that is caused by low levels of functional survival of motor neuron (SMN) protein. Risdiplam is an orally administered, small molecule that modifies SMN2 pre-messenger RNA splicing and increases levels of functional SMN protein. METHODS: We report the results of part 1 of a two-part, phase 2-3, open-label study of risdiplam in infants 1 to 7 months of age who had type 1 spinal muscular atrophy, which is characterized by the infant not attaining the ability to sit without support. Primary outcomes were safety, pharmacokinetics, pharmacodynamics (including the blood SMN protein concentration), and the selection of the risdiplam dose for part 2 of the study. Exploratory outcomes included the ability to sit without support for at least 5 seconds. RESULTS: A total of 21 infants were enrolled. Four infants were in a low-dose cohort and were treated with a final dose at month 12 of 0.08 mg of risdiplam per kilogram of body weight per day, and 17 were in a high-dose cohort and were treated with a final dose at month 12 of 0.2 mg per kilogram per day. The baseline median SMN protein concentrations in blood were 1.31 ng per milliliter in the low-dose cohort and 2.54 ng per milliliter in the high-dose cohort; at 12 months, the median values increased to 3.05 ng per milliliter and 5.66 ng per milliliter, respectively, which represented a median of 3.0 times and 1.9 times the baseline values in the low-dose and high-dose cohorts, respectively. Serious adverse events included pneumonia, respiratory tract infection, and acute respiratory failure. At the time of this publication, 4 infants had died of respiratory complications. Seven infants in the high-dose cohort and no infants in the low-dose cohort were able to sit without support for at least 5 seconds. The higher dose of risdiplam (0.2 mg per kilogram per day) was selected for part 2 of the study. CONCLUSIONS: In infants with type 1 spinal muscular atrophy, treatment with oral risdiplam led to an increased expression of functional SMN protein in the blood. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02913482.)
    corecore