59 research outputs found

    Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous-Tertiary boundary hiatus

    Get PDF
    The Chicxulub impact is commonly believed to have caused the Cretaceous-Tertiary boundary mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean Cretaceous-Tertiary boundary sequences based on high-resolution biostratigraphy, quantitative faunal analyses and stable isotopes. Results reveal a major Cretaceous-Tertiary boundary unconformity spanning most of Danian subzone P1a(1) and Maastrichtian zones CF1-CF2 (~400 ka) in the NW Atlantic Bass River core, ODP Sites 1049A, 1049C and 1050C. In the Caribbean ODP Sites 999B and 1001B the unconformity spans from the early Danian zone P1a(1) through to zones CF1-CF4 (~3 Ma). Only in the Demerara Rise ODP Site 1259B is erosion relatively minor and restricted to the earliest Danian zone P0 and most of subzone P1a(1) (~150 ka). In all sites examined, Chicxulub impact spherules are reworked into the early Danian subzone P1a(1) about 150-200 ka after the mass extinction. A similar pattern of erosion and redeposition of impact spherules in Danian sediments has previously been documented from Cuba, Haiti, Belize, Guatemala, south and central Mexico. This pattern can be explained by intensified Gulf stream circulation at times of climate cooling and sea level changes. The age of the Chicxulub impact cannot be determined from these reworked impact spherule layers, but can be evaluated based on the stratigraphically oldest spherule layer in NE Mexico and Texas, which indicates that this impact predates the Cretaceous-Tertiary boundary by about 130-150 k

    Atmospheric halogen and acid rains during the major Deccan episode: magnetic and mineral evidences

    Get PDF
    Environmental and climatic changes linked to Deccan volcanism are still poorly known. A major limitation resides in the paucity of direct Deccan volcanism markers and in the geologically short interval where both impact and volcanism occurred, making it hard to evaluate their contributions to the mass extinction. We investigated the low magnetic susceptibility interval just below the Iridium-rich layer of the Bidart (France) section, which was recently hypothesized to be the result of palaeoenvironmental perturbations linked to paroxysmal Deccan phase-2. Results show a drastic decrease of detrital magnetite and presence of fine specular akaganeite, a hypothesized reaction product between FeCl2 from the volcanic plume with water and oxygen in the high atmosphere. A weathering model of the consequences of acidic rains on a continental regolith reveals nearly complete magnetite dissolution after about 33,000 years, which is consistent with our magnetic data and the duration of the Deccan phase-2. This discovery represents an unprecedented piece of evidence of the nature and importance of the Deccan-related environmental changes

    Atmospheric halogen and acid rains during the main phase of Deccan eruptions: magnetic and mineral evidence

    Get PDF
    Environmental changes linked to Deccan volcanism are still poorly known. A major limitation resides in the paucity of direct Deccan volcanism markers and in the geologically short interval where both impact and volcanism occurred, making it hard to evaluate their contributions to the mass extinction. We investigated the low-magnetic-susceptibility interval just below the iridium-rich layer of the Bidart (France) section, which was recently hypothesized to be the result of paleoenvironmental perturbations linked to paroxysmal Deccan phase 2. Results show a drastic decrease of detrital magnetite and presence of scarce akaganeite, a hypothesized reaction product formed in the aerosols derived from reaction of a volcanic plume with water and oxygen in the high atmosphere. A weathering model of the consequences of acidic rains on a continental regolith reveals nearly complete magnetite dissolution after ~31,000 yr, which is consistent with our magnetic data and falls within the duration of the Deccan phase 2. These results highlight the nature and importance of the Deccan-related environmental changes leading up to the end- Cretaceous mass extinction

    The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum

    Get PDF
    Records of the paleoenvironmental changes that occurred during the Paleocene-Eocene Thermal Maximum (PETM) are preserved in sedimentary rocks along the margins of the former Tethys Ocean and Peri-Tethys. This paper presents new geochemical data that constrain paleoproductivity, sediment delivery, and seawater redox conditions, from three sites that were located in the Peri-Tethys region. Trace and major element, iron speciation, and biomarker data indicate that water column anoxia was established during episodes when inputs of land-derived higher plant organic carbon and highly weathered detrital clays and silts became relatively higher. Anoxic conditions are likely to have been initially caused by two primary processes: (i) oxygen consumption by high rates of marine productivity, initially stimulated by the rapid delivery of terrestrially derived organic matter and nutrients, and (ii) phosphorus regeneration from seafloor sediments. The role of the latter process requires further investigation before its influence on the spread of deoxygenated seawater during the PETM can be properly discerned. Other oxygen-forcing processes, such as temperature/salinity-driven water column stratification and/or methane oxidation, are considered to have been relatively less important in the study region. Organic carbon enrichments occur only during the initial stages of the PETM as defined by the negative carbon isotope excursions at each site. The lack of observed terminal stage organic carbon enrichment does not support a link between PETM climate recovery and the sequestration of excess atmospheric CO2 as organic carbon in this region; such a feedback may, however, have been important in the early stages of the PETM

    Mercury enrichments of the Pyrenean foreland basins sediments support enhanced volcanism during the Paleocene-Eocene thermal maximum (PETM)

    Get PDF
    The Paleogene records the most prominent global climate change of the Cenozoic Era with a shift from a greenhouse to an icehouse world. Several transient hyperthermal events punctuated this long-term evolution. The most pronounced and the best known of these is the Paleocene-Eocene Thermal Maximum (PETM-56 Ma). This event is associated with global warming, a worldwide perturbation of the carbon cycle, and significant biotic changes. The PETM is primarily recorded by a sharp negative carbon isotope excursion (NCIE) in both carbonates and organic matter of sedimentary successions. The source of the 13C-depleted carbon for the NCIE and whether it was released in one or numerous events is still debated. Several carbon sources have been proposed to explain the PETM-NCIE and the mechanisms that triggered this abrupt climate upheaval. These include, among others, the magmatic and thermogenic release of carbon associated with the emplacement of Large Igneous Provinces (LIP). One proxy for tracking past volcanic emissions in the geological record and testing hypothetical links between volcanism and hyperthermals is the use of mercury (Hg) anomalies found in marine and continental sedimentary successions. Here, we present new high-resolution mercury and stable isotopic records from a continental-marine transect in Pyrenean peripheral basins during the PETM. Compared to deeper marine settings, the significant sedimentation rate that characterizes these high-accommodation and high sediment-supply environments allows the preservation of expanded successions, providing reliable information about the fluctuations of Hg concentration in deposits across the PETM. Our data reveal two large negative carbon excursions across the studied successions. Based on biostratigraphy and the similarity of shape and amplitude of the isotopic excursions with global records, we interpret the largest NCIE as the PETM. This main excursion is preceded by another that we interpret as the Pre-Onset Excursion (POE), found in other profiles worldwide. We find that the POE and the PETM are, in our studied sections, systematically associated with significant Hg anomalies regardless of the depositional environment. These results suggest that large pulses of volcanism, possibly related to the North Atlantic Igneous Province's emplacement, contributed to the onset and possibly also to the long duration of the PETM. Furthermore, the record of higher Hg anomalies in nearshore than offshore settings suggests a massive collapse of terrestrial ecosystems linked to volcanism-driven environmental change triggered significant Hg loading in shallow marine ecosystems. If this is correct, these findings confirm the primary role of the solid Earth in determining past terrestrial climates
    corecore