28 research outputs found

    Π‘ΠΈΠ½Ρ‚Π΅Π·, антиоксидантна Ρ‚Π° Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ„Π»ΡƒΠΎΡ€ΠΎΠ°Π»ΠΊΡ–Π»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Π΄ΠΈΠ½ΠΎΠ½Ρ–Π² Ρ‚Π° Ρ‚Ρ–Π°Π·ΠΈΠ½Π°Π½ΠΎΠ½Ρ–Π², Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ амінофосфонатний Π°Π±ΠΎ амінокарбоксилатний Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚

    Get PDF
    2-R-2-RF-4-ΠΎxo-thiazolidines, thiazinanes, and bezothiazinanes incorporating a fragment of aminophosphonic or aminocarboxylic acid and a fluoroalkyl group at C-2 atom of the heterocycle have been prepared by cyclocondensation of the corresponding iminophosphonates or iminocarboxylates, RFCH(R)=NH [R = (EtO)2P(O), COOMe, RF = CF3, CHF2], with mercaptoacetic, 3-mercaptopropionic or thiosalicylic acid. The primary screening of the compounds on the antioxidant and antibacterial activity has been carried out. The antioxidant activity has been determined by the method based on auto-oxidation of adrenaline; the antibacterial activity has been investigated by the method of double serial dilution with the use of Hottinger broth. The compounds investigated show only an insignificant antioxidant effect and the low activity towards the strains of such bacteria as E. coli, Ps. aeroginosa, B. subtilis and St. aureus. Compounds bearing diethoxyphosphonyl or methoxycarbonyl group at C-2 atom of a five- or six-member heterocycle show the similar activity in general. For 2-fluoroalkyl substituted 4-thiazolidinon- or 4-bezothiazinanones a considerable growth of the culture biomass has been revealed, and it can find application for growth stimulation of producers of biologically active compounds. Compounds incorporating the thiazinanones or bezothiazinanones fragment reveal the prooxidant effect, and it can become a basis for manifestation of the antineoplastic or antimicrobic activity.ЦиклокондСнсациСй Ρ„Ρ‚ΠΎΡ€Π°Π»ΠΊΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… иминофосфонатов ΠΈ иминокарбоксилатов, RFCH(R)=NH [R = (EtO)2P(O), COOMe, RF = CF3, CHF2], с Ρ‚ΠΈΠΎΠ³Π»ΠΈΠΊΠΎΠ»Π΅Π²ΠΎΠΉ, 3-ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΈΠ»ΠΈ тиосалициловой кислотой синтСзированы 2-R-2-RF-4-оксо-Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΄ΠΈΠ½Ρ‹, Ρ‚ΠΈΠ°Π·ΠΈΠ½Π°Π½Ρ‹ ΠΈ Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½Π°Π½Ρ‹, содСрТащиС Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ аминофосфоновой ΠΈΠ»ΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты ΠΈ Ρ„Ρ‚ΠΎΡ€Π°Π»ΠΊΠΈΠ»ΡŒΠ½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ Π²ΠΎΠ·Π»Π΅ Π‘-2 Π°Ρ‚ΠΎΠΌΠ° Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹ΠΉ скрининг соСдинСний Π½Π° Π°Π½Ρ‚ΠΈΠΎΠΊΡΠΈΠ΄Π°Π½Ρ‚Π½ΡƒΡŽ ΠΈ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. ΠΠ½Ρ‚ΠΈΠΎΠΊΡΠΈΠ΄Π°Π½Ρ‚Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Π±Π°Π·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΡΡ Π½Π° аутоокислСнии Π°Π΄Ρ€Π΅Π½Π°Π»ΠΈΠ½Π°, Π° Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ – ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π²ΡƒΠΊΡ€Π°Ρ‚Π½Ρ‹Ρ… сСрийных Ρ€Π°Π·Π±Π°Π²Π»Π΅Π½ΠΈΠΉ с использованиСм Π±ΡƒΠ»ΡŒΠΎΠ½Π° Π₯ΠΎΡ‚Ρ‚ΠΈΠ½Π³Π΅Ρ€Π°. Π˜Π·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ соСдинСния ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ антиоксидантный эффСкт ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ°Π»ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ исслСдованных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ E. coli, Ps. aeroginosa, B. subtilis ΠΈ St. aureus. БоСдинСния с Π΄ΠΈΡΡ‚ΠΎΠΊΡΠΈΡ„ΠΎΡΡ„ΠΎΠ½ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠΊΡΠΈΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ Π²ΠΎΠ·Π»Π΅ Π‘-2 Π°Ρ‚ΠΎΠΌΠ° пяти- ΠΈΠ»ΠΈ ΡˆΠ΅ΡΡ‚ΠΈΡ‡Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Π° Π² ΠΎΠ±Ρ‰Π΅ΠΌ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Π±Π»ΠΈΠ·ΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Для 2-Ρ„Ρ‚ΠΎΡ€Π°Π»ΠΊΠΈΠ»Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… 4-Ρ‚ΠΈΠ°Π·ΠΎΠ»ΠΈΠ΄ΠΈΠ½ΠΎΠ½- ΠΈΠ»ΠΈ 4-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½Π°Π½ΠΎΠ½ фосфонатов выявлСн Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ прирост биомассы ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π² сравнСнии с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ для стимулирования роста ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ΠΎΠ² биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСдинСний. БоСдинСния с Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ‚ΠΈΠ°Π·ΠΈΠ½Π°Π½ΠΎΠ½Π° ΠΈΠ»ΠΈ Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½Π°Π½ΠΎΠ½Π° ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ прооксидантный эффСкт, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ основой для проявлСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности.Π¦ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°Ρ†Ρ–Ρ”ΡŽ Ρ„Π»ΡƒΠΎΡ€ΠΎΠ°Π»ΠΊΡ–Π»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… імінофосфонатів Ρ‚Π° імінокарбоксилатів, RFCH(R)=NH [R = (EtO)2P(O), COOMe, RF = CF3, CHF2], Π· Ρ‚Ρ–ΠΎΠ³Π»Ρ–ΠΊΠΎΠ»Π΅Π²ΠΎΡŽ, 3-ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎΠΏΡ€ΠΎΠΏΡ–ΠΎΠ½ΠΎΠ²ΠΎΡŽ Π°Π±ΠΎ Ρ‚Ρ–ΠΎΡΠ°Π»Ρ–Ρ†ΠΈΠ»ΠΎΠ²ΠΎΡŽ ΠΊΠΈΡΠ»ΠΎΡ‚ΠΎΡŽ синтСзовано 2-R-2-RF-4-оксо-Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Π΄ΠΈΠ½ΠΈ, Ρ‚Ρ–Π°Π·ΠΈΠ½Π°Π½ΠΈ Ρ‚Π° Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½Π°Π½ΠΈ, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ амінофосфонової Π°Π±ΠΎ Π°ΠΌΡ–Π½ΠΎΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Ρ‚Π° Ρ„Π»ΡƒΠΎΡ€ΠΎΠ°Π»ΠΊΡ–Π»ΡŒΠ½Ρƒ Π³Ρ€ΡƒΠΏΡƒ біля Π‘-2 Π°Ρ‚ΠΎΠΌΠ° Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρƒ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΈΠΉ скринінг сполук Π½Π° антиоксидантну Ρ‚Π° Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ. Антиоксидантну Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Ρ‰ΠΎ Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° аутоокиснСнні Π°Π΄Ρ€Π΅Π½Π°Π»Ρ–Π½Ρƒ, Π° Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½Ρƒ – ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π²ΠΎΠΊΡ€Π°Ρ‚Π½ΠΈΡ… сСрійних Ρ€ΠΎΠ·Π²Π΅Π΄Π΅Π½ΡŒ Π· використанням Π±ΡƒΠ»ΡŒΠΉΠΎΠ½Ρƒ Π₯ΠΎΡ‚Ρ‚ΠΈΠ½Π³Π΅Ρ€Π°. Π’ΠΈΠ²Ρ‡Π΅Π½Ρ– сполуки ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ Ρ‚Ρ–Π»ΡŒΠΊΠΈ Π½Π΅Π·Π½Π°Ρ‡Π½ΠΈΠΉ антиоксидантний Π΅Ρ„Π΅ΠΊΡ‚ Ρ‚Π° Ρ” ΠΌΠ°Π»ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ дослідТСних ΡˆΡ‚Π°ΠΌΡ–Π² Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ E. coli, Ps. aeroginosa, B. subtilis Ρ‚Π° St. aureus. Π‘ΠΏΠΎΠ»ΡƒΠΊΠΈ Π· Π΄Ρ–Π΅Ρ‚ΠΎΠΊΡΠΈΡ„ΠΎΡΡ„ΠΎΠ½Ρ–Π»ΡŒΠ½ΠΎΡŽ Π°Π±ΠΎ ΠΌΠ΅Ρ‚ΠΎΠΊΡΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Π»ΡŒΠ½ΠΎΡŽ Π³Ρ€ΡƒΠΏΠΎΡŽ біля Π‘-2 Π°Ρ‚ΠΎΠΌΠ° п’яти- Π°Π±ΠΎ ΡˆΠ΅ΡΡ‚ΠΈΡ‡Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρƒ Π·Π°Π³Π°Π»ΠΎΠΌ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ ΠΏΠΎΠ΄Ρ–Π±Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ. Для 2-Ρ„Π»ΡƒΠΎΡ€ΠΎΠ°Π»ΠΊΡ–Π»Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… 4-Ρ‚Ρ–Π°Π·ΠΎΠ»Ρ–Π΄ΠΈΠ½ΠΎΠ½- Π°Π±ΠΎ 4-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½Π°Π½ΠΎΠ½ фосфонатів виявлСно Π·Π½Π°Ρ‡Π½ΠΈΠΉ приріст біомаси ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ порівняно Π· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ, Ρ‰ΠΎ ΠΌΠΎΠΆΠ΅ Π·Π½Π°ΠΉΡ‚ΠΈ застосування для ΡΡ‚ΠΈΠΌΡƒΠ»ΡŽΠ²Π°Π½Π½Ρ росту ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Ρ–Π² Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… сполук. Π‘ΠΏΠΎΠ»ΡƒΠΊΠΈ Π· Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ‚Ρ–Π°Π·ΠΈΠ½Π°Π½ΠΎΠ½Ρƒ Π°Π±ΠΎ Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½Π°Π½ΠΎΠ½Ρƒ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ прооксидантний Π΅Ρ„Π΅ΠΊΡ‚, Ρ‰ΠΎ ΠΌΠΎΠΆΠ΅ стати основою для прояву ΠΏΡ€ΠΎΡ‚ΠΈΠΏΡƒΡ…Π»ΠΈΠ½Π½ΠΎΡ— Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності

    The Stereodivergent Formation of 2,6-cis and 2,6-trans-Tetrahydropyrans: Experimental and Computational Investigation of the Mechanism of a Thioester Oxy-Michael Cyclization

    Get PDF
    The origins of the stereodivergence in the thioester oxy-Michael cyclization for the formation of 4-hydroxy-2,6-cis- or 2,6-trans-substituted tetrahydropyran rings under different conditions was investigated both computationally and experimentally. Synthetic studies showed that the 4-hydroxyl group was essential for stereodivergence. When the 4-hydroxyl group was present, TBAF-mediated conditions gave the 2,6-trans-tetrahydropyran and trifluoroacetic acid-mediated conditions gave the 2,6-cis-tetrahydropyran. This stereodivergence vanished when the hydroxyl group was removed or protected. Computational studies revealed that: (i) the trifluoroacetic acid catalysed formation of 2,6-cis-tetrahydropyrans was mediated by a trifluoroacetate-hydroxonium bridge and proceeded via a chair-like transition state; (ii) the TBAF-mediated formation of 2,6-trans-tetrahydropyrans proceeded via a boat-like transition state, where the 4-hydroxyl group formed a crucial hydrogen bond to the cyclizing alkoxide; (iii) both reactions are under kinetic control. The utility of this stereodivergent approach for the formation of 4-hydroxy-2,6-substituted tetrahydropyran rings has been demonstrated by the total syntheses of the anti-osteoporotic natural products diospongin A and

    Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides.

    No full text
    This article describes the studies on regioselective acetal protection of monosaccharide-based diols using chiral phos-phoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various D-glucose, D-galactose, D-mannose and L-fucose derived 1,2-diols, and could be carried in a re-giodivergent fashion depending on the choice of the chiral catalyst. The polymeric catalysts were conveniently recy-cled and reused multiple times for gram scale functionalizations with catalytic loading as low as 0.1 mol%, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 34 regioisomerically pure differentially protected mono- and disaccharide de-rivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected D-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated sub-strates revealed that low-temperature acetalizations happen via syn-addition mechanism, and that the reaction regi-oselectivity exhibits strong dependence on the temperature. The computational studies indicate complex tempera-ture-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and an-other via concerted asynchronous formation of acetal that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2-selectivities and are consistent with experimentally observed selectivity trends

    Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    No full text
    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bisΒ­(oxazoline) copperΒ­(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copperΒ­(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive Ξ²,Ξ²β€²-enones and substituted Ξ²,Ξ²β€²-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Ξ”<sup>5</sup>-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos–Parrish and Wieland–Miescher ketones

    Studies of the Mechanism and Origins of Enantioselectivity for the Chiral Phosphoric Acid-Catalyzed Stereoselective Spiroketalization Reactions

    No full text
    Mechanistic and computational studies were conducted to elucidate the mechanism and the origins of enantiocontrol for asymmetric chiral phosphoric acid-catalyzed spiroketalization reactions. These studies were designed to differentiate between the S<sub>N</sub>1-like, S<sub>N</sub>2-like, and covalent phosphate intermediate-based mechanisms. The chiral phosphoric acid-catalyzed spiroketalization of deuterium-labeled cyclic enol ethers revealed a highly diastereoselective syn-selective protonation/nucleophile addition, thus ruling out long-lived oxocarbenium intermediates. Hammett analysis of the reaction kinetics revealed positive charge accumulation in the transition state (ρ = βˆ’2.9). A new computational reaction exploration method along with dynamics simulations supported an asynchronous concerted mechanism with a relatively short-lived polar transition state (average lifetime = 519 Β± 240 fs), which is consistent with the observed inverse secondary kinetic isotope effect of 0.85. On the basis of these studies, a transition state model explaining the observed stereochemical outcome has been proposed. This model predicts the enantioselective formation of the observed enantiomer of the product with 92% ee, which matches the experimentally observed value
    corecore