280 research outputs found

    Analysis of elastic-plastic shells of revolution under axisymmetric loading by the finite element method

    Get PDF
    Analysis of elastic-plastic shells of revolution under axisymmetric loading by finite element metho

    Antidiabetic potential of salvianolic acid B in multiple low-dose streptozotocin-induced diabetes

    Get PDF
    Context: Salvianolic acids are the most abundant water-soluble compounds extracted from the herb Salvia miltiorrhiza L. (Lamiaceae) with antioxidant and protective effects. Objective: This study evaluates the antidiabetic effect of salvianolic acid B (Sal B) in multiple low-dose streptozotocin (MLDS)-induced diabetes in rat. Materials and methods: Rats were divided into control, Sal B40-treated control, diabetic, Sal B20-, and Sal B40-treated diabetic groups. Sal B was daily administered at doses of 20 or 40 mg/kg (i.p.), started on third day post-STZ injection for 3 weeks. Serum glucose and insulin level and some oxidative stress markers in pancreas were measured in addition to the oral glucose tolerance test (OGTT), histological assessment, and apoptosis determination. Results: After 3 weeks, treatment of diabetic rats with Sal B20 and Sal B40 caused a significant decrease of the serum glucose (p<0.05-0.01) and improvement of OGTT. Meanwhile, serum insulin was significantly higher in Sal B20- and Sal B40-treated diabetics (p<0.01) and treatment of diabetics with Sal B40 significantly lowered malondialdehyde (MDA) (p<0.05), raised glutathione (GSH) (p<0.05), and activity of catalase (p<0.01) with no significant change of nitrite. Furthermore, the number of pancreatic islets (p<0.05) and their area (p<0.01) was significantly higher and apoptosis reactivity was significantly lower (p<0.05) in the Sal B40-treated diabetic group versus diabetics. Discussion and conclusion: Three-week treatment of diabetic rats with Sal B exhibited antidiabetic activity which is partly exerted via attenuation of oxidative stress and apoptosis and augmentation of antioxidant system. © 2015 Informa Healthcare USA, Inc

    Complications in Esthetic Surgery

    Get PDF
    Facial plastic and reconstructive surgery is a remarkably diverse specialty, ranging from maxillofacial trauma and reconstruction to facial rejuvenation, rhinoplasty, cleft surgery, microvascular surgery, facial cosmetic procedures, and pain control. It is unique among surgical specialties due to changing trends, racial, and regional ethnic preferences that influence what is considered an esthetic result

    Evaluation of SD-208, a TGF-β-RI kinase inhibitor, as an anticancer agent in retinoblastoma

    Get PDF
    Retinoblastoma is the most common intraocular tumor in children resulting from genetic alterations and transformation of mature retinal cells. The objective of this study was to investigate the effects of SD-208, TGF-β-RI kinase inhibitor, on the expression of some miRNAs including a miR-17/92 cluster in retinoblastoma cells. Prior to initiate this work, the cell proliferation was studied by Methyl Thiazolyl Tetrazolium (MTT) and bromo-2�-deoxyuridine (BrdU) assays. Then, the expression patterns of four miRNAs (18a, 20a, 22, and 34a) were investigated in the treated SD-208 (0.0, 1, 2 and 3 μM) and untreated Y-79 cells. A remarkable inhibition of the cell proliferation was found in Y-79 cells treated with SD-208 versus untreated cells. Also, the expression changes were observed in miRNAs 18a, 20a, 22 and 34a in response to SD-208 treatment (P<0.05). The findings of the present study suggest that the anti-cancer effect of SD-208 may be exerted due to the regulation of specific miRNAs, at least in this particular retinoblastoma cell line. To the best of the researchers� knowledge, this is the first report demonstrating that the SD-208 could alter the expression of tumor suppressive miRNAs as well as oncomiRs in vitro. In conclusion, the present data suggest that SD-208 could be an alternative agent in retinoblastoma treatment. © 2016 Tehran University of Medical Sciences. All rights reserved

    Numerical analysis of shipping water impacting a step structure

    Get PDF
    Shipping water, the flow washing over and impacting the upper decks of ships and offshore structures, occurs frequently during their service life and often causes structural problems. For engineers to design safe floating structures subjected to shipping water it is essential to gain an in-depth understanding of its depth and flow field, and the resulting impact forces. In this work, Computational Fluid Dynamics (CFD) is applied to understand the physics of shipping water washing over a stepped platform. We find that the most accurate solutions are obtained with the turbulence closure. The hydrodynamic load generated by the shipping water is found to strongly depends on the kinematic energy of the water hitting the step. It is shown that with smaller values of the freeboard a more dynamic flow ensues, with a stronger vortex and larger velocity gradient resulting in deeper shipping water and a larger impact force

    Effect of berberine chloride on caspase-3 dependent apoptosis and antioxidant capacity in the hippocampus of the chronic cerebral hypoperfusion rat model

    Get PDF
    Objective(s): The main goal of the current research was to examine the effects of Berberine (BBR) on apoptotic signaling and hippocampal oxidative stress induced by common carotid artery occlusion. Materials and Methods: Chronic cerebral hypoperfusion (CCH) model was created by occluding the two common carotid arteries (two-vessel occlusion 2VO) permanently. BBR (50 and 100 mg/kg/daily) was intra-gastrically administered to ischemic rats. Neuronal survival was evaluated by Nissl staining. The levels of malondialdehyde (MDA) and antioxidant enzymes, including catalase (CAT) and superoxide dismutase (SOD), along with the activities of caspase 3 were estimated in the hippocampus 2 month after treating the rats with 2VO. Results: According to findings of the present research, the BBR therapy inhibited the neurodegeneration of hippocampus. BBR also significantly decreased the amount of MDA and activity of caspase 3 in the hippocampus. Furthermore, the administration of BBR alleviated the lowered activities of SOD and CAT after 2VO surgery. Conclusion: The antioxidant and antiapoptotic properties of BBR might play important roles in improving functional outcomes and might have significant neuroprotective effects on the CCH damage. © 2019, Mashhad University of Medical Sciences. All rights reserved

    Effect of berberine chloride on caspase-3 dependent apoptosis and antioxidant capacity in the hippocampus of the chronic cerebral hypoperfusion rat model

    Get PDF
    Objective(s): The main goal of the current research was to examine the effects of Berberine (BBR) on apoptotic signaling and hippocampal oxidative stress induced by common carotid artery occlusion. Materials and Methods: Chronic cerebral hypoperfusion (CCH) model was created by occluding the two common carotid arteries (two-vessel occlusion 2VO) permanently. BBR (50 and 100 mg/kg/daily) was intra-gastrically administered to ischemic rats. Neuronal survival was evaluated by Nissl staining. The levels of malondialdehyde (MDA) and antioxidant enzymes, including catalase (CAT) and superoxide dismutase (SOD), along with the activities of caspase 3 were estimated in the hippocampus 2 month after treating the rats with 2VO. Results: According to findings of the present research, the BBR therapy inhibited the neurodegeneration of hippocampus. BBR also significantly decreased the amount of MDA and activity of caspase 3 in the hippocampus. Furthermore, the administration of BBR alleviated the lowered activities of SOD and CAT after 2VO surgery. Conclusion: The antioxidant and antiapoptotic properties of BBR might play important roles in improving functional outcomes and might have significant neuroprotective effects on the CCH damage. © 2019, Mashhad University of Medical Sciences. All rights reserved

    Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus

    Get PDF
    The aim of this study was to assess the impact of a commercial probiotic, Sanolife PRO‐F, on water quality, growth performance, blood profiles and intestinal morphometry of monosex Nile tilapia. A field trial was conducted for 10 weeks in which tilapia fingerlings (20 ± 1.26 g) were randomly distributed into three replicate ponds which were subdivided into three treatment groups, receiving Sanolife PRO‐F at 0 (B0), 0.1 (B1) and 0.2 (B2) g/kg diet, respectively. The results showed a significant improvement in growth performance, feed conversion ratio and blood profiles in tilapia fed on treated diets. The whole intestinal lengths, anterior and terminal intestinal villi heights and anterior goblet cells count were greater in tilapia fed on treated diets. There were no noticeable differences in growth and intestinal morphology between tilapia fed on B1 and B2 diets. The ammonia concentration in water was lower with B1 diet while electric conductivity, salinity and total dissolved solids were higher with the B2 diet. The pH level of pond water was enhanced by both diets, B1 and B2. In conclusion, application of Sanolife PRO‐F at 0.1–0.2 g/kg diet might have beneficial effects on growth, immunity, stress responses and gut health and function as well as the water quality of farmed Nile tilapia

    Powerful plant antioxidants : a new biosustainable approach to the production of rosmarinic acid

    Get PDF
    Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources. A botanical and phytochemical description is provided of a new rich source of RA, Satureja khuzistanica Jamzad (Lamiaceae). Recently reported approaches to the biotechnological production of RA are summarized, highlighting the establishment of cell suspension cultures of S. khuzistanica as an RA chemical biofactory
    corecore