36 research outputs found

    The Gene Ontology in 2010: extensions and refinements

    Get PDF
    The Gene Ontology (GO) Consortium (http://www.geneontology.org) (GOC) continues to develop, maintain and use a set of structured, controlled vocabularies for the annotation of genes, gene products and sequences. The GO ontologies are expanding both in content and in structure. Several new relationship types have been introduced and used, along with existing relationships, to create links between and within the GO domains. These improve the representation of biology, facilitate querying, and allow GO developers to systematically check for and correct inconsistencies within the GO. Gene product annotation using GO continues to increase both in the number of total annotations and in species coverage. GO tools, such as OBO-Edit, an ontology-editing tool, and AmiGO, the GOC ontology browser, have seen major improvements in functionality, speed and ease of use

    Helping Biomedical Researchers Gain the Credit They Deserve

    Get PDF
    In an era of large-scale biomedical research, generating and sharing datasets in an open manner is an important, but non-trivial task. However, researchers are subject to the ‘publish or perish’ culture, where career progression and tenure is highly dependent on publishing papers in peer reviewed journals with high impact factors. Standard journals often have limited space available for each paper, thus much of the scientific literature has little data associated with each article. In addition, the publication of a dataset is rarely considered as having as high an impact compared with a data analysis paper. There are also numerous technical obstacles in making datasets truly accessible. These issues combine to create a scientific culture where sharing and publishing data ends up low on a researchers’ list of priorities. However, open data can be beneficial to scientific progress in several ways; for example enabling data to be verified1 or the testing of novel hypotheses that were unforeseen at the time of data generation2. F1000Research is working with funders and institutions to begin addressing some of these challenges. We have implemented several initiatives to provide methods and tools to capture the production of scientific data, and to establish this as an important output of research activity in itself. References Simonsohn U, 2013. Just Posting It works, leads to new retraction in Psychology. Data Colada [blog] 17th September [Accessed: 20 Jan 2014] Chappell, P. R. and Lorrey, A. M., 2013. Identifying New Zealand, Southeast Australia, and Southwest Pacific historical weather data sources using Ian Nicholson\u27s Log of Logs. Geoscience Data Journal (http://dx.doi.org/10.1002/gdj3.1) [Early View (Online Version of Record published before inclusion in an issue)

    Standardising and Harmonising Research Data Policy in Scholarly Publishing

    Get PDF
    To address the complexities researchers face during publication, and the potential community-wide benefits of wider adoption of clear data policies, the publisher Springer Nature has developed a standardised, common framework for the research data policies of all its journals. An expert working group was convened to audit and identify common features of research data policies of the journals published by Springer Nature, where policies were present. The group then consulted with approximately 30 editors, covering all research disciplines within the organisation. The group also consulted with academic editors, librarians and funders, which informed development of the framework and the creation of supporting resources. Four types of data policy were defined in recognition that some journals and research communities are more ready than others to adopt strong data policies. As of January 2017 more than 700 journals have adopted a standard policy and this number is growing weekly. To potentially enable standardisation and harmonisation of data policy across funders, institutions, repositories, societies and other publishers, the policy framework was made available under a Creative Commons license. However, the framework requires wider debate with these stakeholders and an Interest Group within the Research Data Alliance (RDA) has been formed to initiate this process

    Connecting Data Publication to the Research Workflow: A Preliminary Analysis

    Get PDF
    The data curation community has long encouraged researchers to document collected research data during active stages of the research workflow, to provide robust metadata earlier, and support research data publication and preservation. Data documentation with robust metadata is one of a number of steps in effective data publication. Data publication is the process of making digital research objects ‘FAIR’, i.e. findable, accessible, interoperable, and reusable; attributes increasingly expected by research communities, funders and society. Research data publishing workflows are the means to that end. Currently, however, much published research data remains inconsistently and inadequately documented by researchers. Documentation of data closer in time to data collection would help mitigate the high cost that repositories associate with the ingest process. More effective data publication and sharing should in principle result from early interactions between researchers and their selected data repository. This paper describes a short study undertaken by members of the Research Data Alliance (RDA) and World Data System (WDS) working group on Publishing Data Workflows. We present a collection of recent examples of data publication workflows that connect data repositories and publishing platforms with research activity ‘upstream’ of the ingest process. We re-articulate previous recommendations of the working group, to account for the varied upstream service components and platforms that support the flow of contextual and provenance information downstream. These workflows should be open and loosely coupled to support interoperability, including with preservation and publication environments. Our recommendations aim to stimulate further work on researchers’ views of data publishing and the extent to which available services and infrastructure facilitate the publication of FAIR data. We also aim to stimulate further dialogue about, and definition of, the roles and responsibilities of research data services and platform providers for the ‘FAIRness’ of research data publication workflows themselves

    The representation of heart development in the gene ontology

    Get PDF
    AbstractAn understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling.In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development. This work also aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject.The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area

    The TRUST Principles for digital repositories.

    Get PDF
    As information and communication technology has become pervasive in our society, we are increasingly dependent on both digital data and repositories that provide access to and enable the use of such resources. Repositories must earn the trust of the communities they intend to serve and demonstrate that they are reliable and capable of appropriately managing the data they hold. Following a year-long public discussion and building on existing community consensus1, several stakeholders, representing various segments of the digital repository community, have collaboratively developed and endorsed a set of guiding principles to demonstrate digital repository trustworthiness. Transparency, Responsibility, User focus, Sustainability and Technology: the TRUST Principles provide a common framework to facilitate discussion and implementation of best practice in digital preservation by all stakeholders.Proyecto de Enlace de Biblioteca

    A method for increasing expressivity of Gene Ontology annotations using a compositional approach.

    Get PDF
    BACKGROUND: The Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations. RESULTS: The GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector-target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions. CONCLUSIONS: The additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism's gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction

    Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology.

    Get PDF
    BACKGROUND: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. METHODS AND RESULTS: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. CONCLUSIONS: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. Circ Genom Precis Med 2018 Feb; 11(2):e001813

    Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.

    Get PDF
    By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made

    The impact of focused Gene Ontology curation of specific mammalian systems.

    Get PDF
    The Gene Ontology (GO) resource provides dynamic controlled vocabularies to provide an information-rich resource to aid in the consistent description of the functional attributes and subcellular locations of gene products from all taxonomic groups (www.geneontology.org). System-focused projects, such as the Renal and Cardiovascular GO Annotation Initiatives, aim to provide detailed GO data for proteins implicated in specific organ development and function. Such projects support the rapid evaluation of new experimental data and aid in the generation of novel biological insights to help alleviate human disease. This paper describes the improvement of GO data for renal and cardiovascular research communities and demonstrates that the cardiovascular-focused GO annotations, created over the past three years, have led to an evident improvement of microarray interpretation. The reanalysis of cardiovascular microarray datasets confirms the need to continue to improve the annotation of the human proteome. AVAILABILITY: GO ANNOTATION DATA IS FREELY AVAILABLE FROM: ftp://ftp.geneontology.org/pub/go/gene-associations
    corecore