32 research outputs found

    Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of Geobacter sulfurreducens Biofilms.

    Get PDF
    Extracellular electron transfer (EET) in microorganisms is prevalent in nature and has been utilized in functional bioelectrochemical systems. EET of Geobacter sulfurreducens has been extensively studied and has been revealed to be facilitated through c-type cytochromes, which mediate charge between the electrode and G. sulfurreducens in anodic mode. However, the EET pathway of cathodic conversion of fumarate to succinate is still under debate. Here, we apply a variety of analytical methods, including electrochemistry, UV-vis absorption and resonance Raman spectroscopy, quartz crystal microbalance with dissipation, and electron microscopy, to understand the involvement of cytochromes and other possible electron-mediating species in the switching between anodic and cathodic reaction modes. By switching the applied bias for a G. sulfurreducens biofilm coupled to investigating the quantity and function of cytochromes, as well as the emergence of Fe-containing particles on the cell membrane, we provide evidence of a diminished role of cytochromes in cathodic EET. This work sheds light on the mechanisms of G. sulfurreducens biofilm growth and suggests the possible existence of a nonheme, iron-involving EET process in cathodic mode.N.K. was supported by a Royal Society Newton International Fellowship, NF160054. E.R., X.F. and N.H. acknowledge the European Research Council (ERC) Consolidator Grant “MatEnSAP” (682833). S. K. was supported by a Marie SkƂodowska-Curie Fellowship (EMES, 744317). K. H. Ly acknowledges the Open Topic Postdoc Programme of the Technische UniversitĂ€t Dresden and the Marie Sklodowska Curie IF, GAN 701192. The TEM was funded through the EPSRC underpinning multi-user equipment call (EP/P030467/1

    Hydrogen evolution by cobalt hangman porphyrins under operating conditions studied by vibrational spectro-electrochemistry

    Get PDF
    Cobalt hangman complexes are promising catalysts for dihydrogen production, yet their electrocatalytic performance in aqueous environment is still a topic of dispute. Surface-enhanced resonance Raman (SERR) spectro-electrochemistry has a great potential to give insight into the reaction mechanism of such molecular catalysts attached to electrodes under turnover conditions. However, the intrinsic catalytic activity of plasmonic supports and photoinduced side-reactions make the in situ analysis of their structures very challenging. In this work, the structure of hangman complexes attached to electrodes via dip-coating was investigated during catalytic turnover by electrochemistry and SERR spectroscopy. In order to explore the relevance of the hanging group for proton supply, complexes bearing a carboxylic acid and an ester hanging group were compared. For the former, SERR spectra recorded under turnover conditions indicate the reductive formation of a Co^(III)–H species, followed by laser-induced translocation of a proton to the carboxylic hanging group and the associated formation of the Co^I state. Due to the lack of a proton accepting group, hangman complexes with an ester group could not be trapped in the Co^I intermediate state and as a consequence SERR spectra solely reflected the (photo-enriched) Co^(II) resting state under turnover conditions. These results represent the first Raman spectroscopic insights into intermediates of dihydrogen evolution catalysed by cobalt hangman complexes on electrodes and support the direct involvement of the hanging group as a proton shuttle

    Hydrogen evolution by cobalt hangman porphyrins under operating conditions studied by vibrational spectro-electrochemistry

    Get PDF
    Cobalt hangman complexes are promising catalysts for dihydrogen production, yet their electrocatalytic performance in aqueous environment is still a topic of dispute. Surface-enhanced resonance Raman (SERR) spectro-electrochemistry has a great potential to give insight into the reaction mechanism of such molecular catalysts attached to electrodes under turnover conditions. However, the intrinsic catalytic activity of plasmonic supports and photoinduced side-reactions make the in situ analysis of their structures very challenging. In this work, the structure of hangman complexes attached to electrodes via dip-coating was investigated during catalytic turnover by electrochemistry and SERR spectroscopy. In order to explore the relevance of the hanging group for proton supply, complexes bearing a carboxylic acid and an ester hanging group were compared. For the former, SERR spectra recorded under turnover conditions indicate the reductive formation of a Co^(III)–H species, followed by laser-induced translocation of a proton to the carboxylic hanging group and the associated formation of the Co^I state. Due to the lack of a proton accepting group, hangman complexes with an ester group could not be trapped in the Co^I intermediate state and as a consequence SERR spectra solely reflected the (photo-enriched) Co^(II) resting state under turnover conditions. These results represent the first Raman spectroscopic insights into intermediates of dihydrogen evolution catalysed by cobalt hangman complexes on electrodes and support the direct involvement of the hanging group as a proton shuttle

    Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction.

    Get PDF
    The rational control of forming and stabilizing reaction intermediates to guide specific reaction pathways remains to be a major challenge in electrocatalysis. In this work, we report a surface active-site engineering approach for modulating electrocatalytic CO2 reduction using the macrocycle cucurbit[6]uril (CB[6]). A pristine gold surface functionalized with CB[6] nanocavities was studied as a hybrid organic-inorganic model system that utilizes host-guest chemistry to influence the heterogeneous electrocatalytic reaction. The combination of surface-enhanced infrared absorption (SEIRA) spectroscopy and electrocatalytic experiments in conjunction with theoretical calculations supports capture and reduction of CO2 inside the hydrophobic cavity of CB[6] on the gold surface in aqueous KHCO3 at negative potentials. SEIRA spectroscopic experiments show that the decoration of gold with the supramolecular host CB[6] leads to an increased local CO2 concentration close to the metal interface. Electrocatalytic CO2 reduction on a CB[6]-coated gold electrode indicates differences in the specific interactions between CO2 reduction intermediates within and outside the CB[6] molecular cavity, illustrated by a decrease in current density from CO generation, but almost invariant H2 production compared to unfunctionalized gold. The presented methodology and mechanistic insight can guide future design of molecularly engineered catalytic environments through interfacial host-guest chemistry

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≄18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke
    corecore