20 research outputs found

    Amperometric monitoring of redox activity in intact, permeabilised and lyophilised cells of the yeast Hansenula polymorpha

    No full text
    An effect of permeabilisation and lyophilisation of the yeast cells Hansenula polymorpha on their electrochemical behaviour in the presence of mediators, substrates (formaldehyde, glucose, methanol, ethanol), and cofactors (NAD+, NADP+, NADH, NADPH, glutathione) has been studied. Two amperometric techniques differing in the cell immobilisation methods were applied. The cells of a wild strain (356) and mutant strains (C-105 and KCA 33) of the yeast, grown in the presence of glucose or methanol, were used in the experiments. The intact cells revealed the highest reduction rates of mediators, 2,6-dichlorphenolindophenol (DCIP) and 2,4-benzoquinone (BQ), as measured by amperometry. The addition of formaldehyde significantly enhanced the response, if the cells were grown in the presence of glucose. The permeabilised cells showed the lowest current level in the presence of DCIP and BQ and no response to the addition of formaldehyde and NAD+. However, the addition of NADH gave significant current surge. All these phenomena imply that the permeabilised cells lost cofactors and the activity of dehydrogenases producing NADH, but they remained the activity of NADH-ubiquinone oxidoreductase and of some components of the electron transport chain. The electrochemical behaviour of the lyophilised cells shows they are heterogeneous. The partial degradation of the outer membrane of the cells after their lyophilisation was electrochemically confirmed. Keywords: Yeast Hansenula polymorpha, Intact, Amperometry, Mediator

    Intact and permeabilized cells of the yeast Hansenula polymorpha as bioselective elements for amperometric assay of formaldehyde

    No full text
    Intact and permeabilized yeast cells were tested as the biorecognition elements for amperometric assay of formaldehyde (FA). For this aim, the mutant G 105 (gcr1 catX) of the methylotrophic yeast Hansenula polymorpha with a high activity of AOX was chosen. Different approaches were used for monitoring FA-dependent cell response including analysis of their oxygen consumption rate by the use of a Clark electrode, as well as assay of oxidation of redox mediator at a screen-printed platinum electrode covered by cells entrapped in Ca-alginate gel. It was shown that oxygen consumption rate of permeabilized cells reached its saturation at 4 mM of FA (23 degrees C). The detection limit was found to be 0.27 mM. In the presence of redox mediator 2,6-dichlorophenolindophenol (DCIP), the screen-printed platinum band electrode covered by permeabilized cells did not show any current output to FA. In contrast, well-pronounced amperometric response to FA was observed in the case of intact yeast cells in the presence of DCIR It was shown that current output reached its maximum at 7 mM concentration of FA. The detection limit was found to be 0.74 mM. Obviously, it is necessary to perform a directed genetic engineering of the yeast cells to improve their bioanalytical characteristics in the corresponding biosensors. (c) 2006 Elsevier B.V. All rights reserved

    Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application

    No full text
    A new method involving laccase-mediator system has been developed for environmentally friendly synthesis of polyaniline/multi-walled carbon nanotubes (PANI/MWCNT) composite. Fungal laccase, potassium octocyanomolibdate (4+) and atmospheric oxygen served as catalyst, redox-mediator and terminal oxidant, respectively. The structure, morphology and electrical conductivity of composites with different PANI content were investigated. The energy storage of enzymatically obtained composite consists of an electrical double layer capacitance as well as pseudocapacitance of conducting polymer. The obtained PANI/MWCNT composite with PANI content ca. 49 wt.% had high specific capacitance and cycle stability during doping/dedoping. The specific capacitance of this composite measured by cyclic voltammetry technique with potential scan rate of 5 mV/s was ca. 440 F/g. The specific capacitance of the composite decreased by less than 7% of its maximum value after 1000 scan cycles between -0.1 and 0.7 V. Supercapacitor (SC) shell was made from flexible adhesive tape (regular Scotch tape) and current collector was formed after its separation from the surface of graphite foil. The ethanol dispersion of PANI/MWCNT composite was deposited on the current collector surface. The gel polymer electrolyte (polyvinyl alcohol in 1 M phosphoric acid) was employed as both electrolyte medium and separator. The energy and power densities under an operating window of 0.7 V were ca. 7.03 Wh/kg and 5.2 kW/kg, respectively. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved

    Impact of surface modification with gold nanoparticles on the bioelectrocatalytic parameters of immobilized bilirubin oxidase

    No full text
    We unveil experimental evidence that put into question the widely held notion concerning the impact of nanoparticles on the bioelectrocatalytic parameters of enzymatic electrodes. Comparative studies of the bioelectrocatalytic properties of fungal bilirubin oxidase from Myrothecium verrucaria adsorbed on gold electrodes, modified with gold nanoparticles of different diameters, clearly indicate that neither the direct electron transfer rate (standard heterogeneous electron transfer rate constants were calculated to be 31±9 s-1) nor the biocatalytic activity of the adsorbed enzyme (bioelectrocatalytic constants were calculated to be 34±11 s-1) depends on the size of the nanoparticles, which had diameters close to or larger than those of the enzyme molecules

    Impact of surface modification with gold nanoparticles on the bioelectrocatalytic parameters of immobilized bilirubin oxidase

    No full text
    We unveil experimental evidence that put into question the widely held notion concerning the impact of nanoparticles on the bioelectrocatalytic parameters of enzymatic electrodes. Comparative studies of the bioelectrocatalytic properties of fungal bilirubin oxidase from Myrothecium verrucaria adsorbed on gold electrodes, modified with gold nanoparticles of different diameters, clearly indicate that neither the direct electron transfer rate (standard heterogeneous electron transfer rate constants were calculated to be 31±9 s-1) nor the biocatalytic activity of the adsorbed enzyme (bioelectrocatalytic constants were calculated to be 34±11 s-1) depends on the size of the nanoparticles, which had diameters close to or larger than those of the enzyme molecules
    corecore