1,059 research outputs found

    A Compton Profile Study of Praseodymium and Erbium

    Get PDF

    Sources of Airborne Endotoxins in Ambient Air and Exposure of Nearby Communities—A Review

    Get PDF
    Endotoxin is a bioaerosol component that is known to cause respiratory effects in exposed populations. To date, most research focused on occupational exposure, whilst much less is known about the impact of emissions from industrial operations on downwind endotoxin concentrations. A review of the literature was undertaken, identifying studies that reported endotoxin concentrations in both ambient environments and around sources with high endotoxin emissions. Ambient endotoxin concentrations in both rural and urban areas are generally below 10 endotoxin units (EU) m−3; however, around significant sources such as compost facilities, farms, and wastewater treatment plants, endotoxin concentrations regularly exceeded 100 EU m−3. However, this is affected by a range of factors including sampling approach, equipment, and duration. Reported downwind measurements of endotoxin demonstrate that endotoxin concentrations can remain above upwind concentrations. The evaluation of reported data is complicated due to a wide range of different parameters including sampling approaches, temperature, and site activity, demonstrating the need for a standardised methodology and improved guidance. Thorough characterisation of ambient endotoxin levels and modelling of endotoxin from pollution sources is needed to help inform future policy and support a robust health-based risk assessment process

    Cooperatively breeding banded mongooses do not avoid inbreeding through familiarity-based kin recognition

    Get PDF
    In species that live in family groups, such as cooperative breeders, inbreeding is usually avoided through the recognition of familiar kin. For example, individuals may avoid mating with conspecifics encountered regularly in infancy, as these likely include parents, siblings, and closely related alloparents. Other mechanisms have also been reported, albeit rarely; for example, individuals may compare their own phenotype to that of others, with close matches representing likely relatives (“phenotype matching”). However, determinants of the primary inbreeding avoidance mechanisms used by a given species remain poorly understood. We use 24 years of life history and genetic data to investigate inbreeding avoidance in wild cooperatively breeding banded mongooses (Mungos mungo). We find that inbreeding avoidance occurs within social groups but is far from maximised (mean pedigree relatedness between 351 breeding pairs = 0.144). Unusually for a group-living vertebrate, we find no evidence that females avoid breeding with males with which they are familiar in early life. This is probably explained by communal breeding; females give birth in tight synchrony and pups are cared for communally, thus reducing the reliability of familiarity-based proxies of relatedness. We also found little evidence that inbreeding is avoided by preferentially breeding with males of specific age classes. Instead, females may exploit as-yet unknown proxies of relatedness, for example, through phenotype matching, or may employ postcopulatory inbreeding avoidance mechanisms. Investigation of species with unusual breeding systems helps to identify constraints against inbreeding avoidance and contributes to our understanding of the distribution of inbreeding across species. Significance statement: Choosing the right mate is never easy, but it may be particularly difficult for banded mongooses. In most social animals, individuals avoid mating with those that were familiar to them as infants, as these are likely to be relatives. However, we show that this rule does not work in banded mongooses. Here, the offspring of several mothers are raised in large communal litters by their social group, and parents seem unable to identify or direct care towards their own pups. This may make it difficult to recognise relatives based on their level of familiarity and is likely to explain why banded mongooses frequently inbreed. Nevertheless, inbreeding is lower than expected if mates are chosen at random, suggesting that alternative pre- or post-copulatory inbreeding avoidance mechanisms are used

    A Controlled Study on the Characterisation of Bioaerosols Emissions from Compost

    Get PDF
    Bioaerosol emissions arising from biowaste treatment are an issue of public concern. To better characterise the bioaerosols, and to assess a range of measurement methods, we aerosolised green waste compost under controlled conditions. Viable and non-viable Andersen samplers, cyclone samplers and a real time bioaerosol detection system (Spectral Intensity Bioaerosol Sensor (SIBS)) were deployed simultaneously. The number-weighted fraction of fluorescent particles was in the range 22–26% of all particles for low and high emission scenarios. Overall fluorescence spectral profiles seen by the SIBS exhibited several peaks across the 16 wavelength bands from 298 to 735 nm. The size-fractionated endotoxin profile showed most endotoxin resided in the 2.1–9 μm aerodynamic diameter fraction, though up to 27% was found in a finer size fraction. A range of microorganisms were detected through culture, Matrix Assisted Laser Desorption and Ionisation Time of Flight Mass Spectrometry (MALDI-TOF) and quantitative polymerase chain reaction (qPCR), including Legionella pneumophila serogroup 1. These findings contribute to our knowledge of the physico-chemical and biological characteristics of bioaerosols from composting sites, as well as informing future monitoring approaches and data interpretation for bioaerosol measurement

    Fixing the BMS Frame of Numerical Relativity Waveforms

    Get PDF
    Understanding the Bondi-Metzner-Sachs (BMS) frame of the gravitational waves produced by numerical relativity is crucial for ensuring that analyses on such waveforms are performed properly. It is also important that models are built from waveforms in the same BMS frame. Up until now, however, the BMS frame of numerical waveforms has not been thoroughly examined, largely because the necessary tools have not existed. In this paper, we show how to analyze and map to a suitable BMS frame for numerical waveforms calculated with the Spectral Einstein Code (SpEC). However, the methods and tools that we present are general and can be applied to any numerical waveforms. We present an extensive study of 13 binary black hole systems that broadly span parameter space. From these simulations, we extract the strain and also the Weyl scalars using both SpECTRE's Cauchy-characteristic extraction module and also the standard extrapolation procedure with a displacement memory correction applied during post-processing. First, we show that the current center-of-mass correction used to map these waveforms to the center-of-mass frame is not as effective as previously thought. Consequently, we also develop an improved correction that utilizes asymptotic Poincar\'e charges instead of a Newtonian center-of-mass trajectory. Next, we map our waveforms to the post-Newtonian (PN) BMS frame using a PN strain waveform. This helps us find the unique BMS transformation that minimizes the L2L^{2} norm of the difference between the numerical and PN strain waveforms during the early inspiral phase. We find that once the waveforms are mapped to the PN BMS frame, they can be hybridized with a PN strain waveform much more effectively than if one used any of the previous alignment schemes, which only utilize the Poincar\'e transformations

    Global, Regional, and National Life Expectancy, All-Cause Mortality, and Cause-Specific Mortality for 249 Causes of Death, 1980-2015: A Systematic Analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer\u27s disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd

    High Precision Ringdown Modeling: Multimode Fits and BMS Frames

    Get PDF
    Quasi-normal mode (QNM) modeling is an invaluable tool for studying strong gravity, characterizing remnant black holes, and testing general relativity. To date, most studies have focused on the dominant (2,2)(2, 2) mode, and have fit to standard strain waveforms from numerical relativity. But, as gravitational wave observatories become more sensitive, they can resolve higher-order modes. Multimode fits will be critically important, and in turn require a more thorough treatment of the asymptotic frame at I+\mathscr{I}^+. The first main result of this work is a method for systematically fitting a QNM model containing many modes to a numerical waveform produced using Cauchy-characteristic extraction, which is known to exhibit memory effects. We choose the modes to model based on their power contribution to the residual between numerical and model waveforms. We show that the all-angles mismatch improves by a factor of 105\sim 10^5 when using multimode fitting as opposed to only fitting (2,±2,n)(2, \pm2, n) modes. Our second main result addresses a critical point that has been overlooked in the literature: the importance of matching the Bondi-van der Burg-Metzner-Sachs (BMS) frame of the simulated gravitational wave to that of the QNM model. We show that by mapping the numerical relativity waveforms to the super rest frame, there is an improvement of 105\sim 10^5 in the all-angles strain mismatch, compared to using the strain whose BMS frame is not fixed. We illustrate the effectiveness of these modeling enhancements by applying them to families of waveforms produced by numerical relativity, and comparing our results to previous studies

    Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaeaL.)

    Get PDF
    Background Peanut is one of the major source for human consumption worldwide and its seed contain approximately 50% oil. Improvement of oil content and quality traits (high oleic and low linoleic acid) in peanut could be accelerated by exploiting linked markers through molecular breeding. The objective of this study was to identify QTLs associated with oil content, and estimate relative contribution of FAD2 genes (ahFAD2A and ahFAD2B) to oil quality traits in two recombinant inbred line (RIL) populations. Results Improved genetic linkage maps were developed for S-population (SunOleic 97R × NC94022) with 206 (1780.6 cM) and T-population (Tifrunner × GT-C20) with 378 (2487.4 cM) marker loci. A total of 6 and 9 QTLs controlling oil content were identified in the S- and T-population, respectively. The contribution of each QTL towards oil content variation ranged from 3.07 to 10.23% in the S-population and from 3.93 to 14.07% in the T-population. The mapping positions for ahFAD2A (A sub-genome) and ahFAD2B (B sub-genome) genes were assigned on a09 and b09 linkage groups. The ahFAD2B gene (26.54%, 25.59% and 41.02% PVE) had higher phenotypic effect on oleic acid (C18:1), linoleic acid (C18:2), and oleic/linoleic acid ratio (O/L ratio) than ahFAD2A gene (8.08%, 6.86% and 3.78% PVE). The FAD2 genes had no effect on oil content. This study identified a total of 78 main-effect QTLs (M-QTLs) with up to 42.33% phenotypic variation (PVE) and 10 epistatic QTLs (E-QTLs) up to 3.31% PVE for oil content and quality traits. Conclusions A total of 78 main-effect QTLs (M-QTLs) and 10 E-QTLs have been detected for oil content and oil quality traits. One major QTL (more than 10% PVE) was identified in both the populations for oil content with source alleles from NC94022 and GT-C20 parental genotypes. FAD2 genes showed high effect for oleic acid (C18:1), linoleic acid (C18:2), and O/L ratio while no effect on total oil content. The information on phenotypic effect of FAD2 genes for oleic acid, linoleic acid and O/L ratio, and oil content will be applied in breeding selection

    Multipole moments on the common horizon in a binary-black-hole simulation

    Get PDF
    We construct the covariantly defined multipole moments on the common horizon of an equal-mass, non-spinning, quasicircular binary-black-hole system. We see a strong correlation between these multipole moments and the gravitational waveform. We find that the multipole moments are well described by the fundamental quasinormal modes at sufficiently late times. For each multipole moment, at least two fundamental modes of different \ell are detectable in the best model. These models provide faithful estimates of the true mass and spin of the remnant black hole. We also show that by including overtones, the =m=2\ell=m=2 mass multipole moment admits an excellent quasinormal-mode description at all times after the merger. This demonstrates the perhaps surprising power of perturbation theory near the merger
    corecore