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Understanding the Bondi-Metzner-Sachs (BMS) frame of the gravitational waves produced by

numerical relativity is crucial for ensuring that analyses on such waveforms are performed properly.

It is also important that models are built from waveforms in the same BMS frame. Up until now,
however, the BMS frame of numerical waveforms has not been thoroughly examined, largely because
the necessary tools have not existed. In this paper, we show how to analyze and map to a suitable
BMS frame for numerical waveforms calculated with the Spectral Einstein Code (SpEC). However,

the methods and tools that we present are general and can be applied to any numerical waveforms.
We present an extensive study of 13 binary black hole systems that broadly span parameter space.

From these simulations, we extract the strain and also the Weyl scalars using both SpECTRE’s
Cauchy-characteristic extraction module and also the standard extrapolation procedure with a
displacement memory correction applied during post-processing. First, we show that the current
center-of-mass correction used to map these waveforms to the center-of-mass frame is not as effective
as previously thought. Consequently, we also develop an improved correction that utilizes asymptotic
Poincaré charges instead of a Newtonian center-of-mass trajectory. Next, we map our waveforms to
the post-Newtonian (PN) BMS frame using a PN strain waveform. This helps us find the unique
BMS transformation that minimizes the L? norm of the difference between the numerical and PN
strain waveforms during the early inspiral phase. We find that once the waveforms are mapped to
the PN BMS frame, they can be hybridized with a PN strain waveform much more effectively than

if one used any of the previous alignment schemes, which only utilize the Poincaré transformations.
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largest of the publicly available waveform catalogs—and
the RIT Catalog [5] attempt to fix the Poincaré frame
of their asymptotic waveforms by mapping them to the
unique center-of-mass (CoM) frame through what they
call a center-of-mass correction [1, 2, 5, 6].3

This correction—or this fixing of the Poincaré frame—
uses the masses and the trajectories of the two black holes
to construct the Newtonian center-of-mass trajectory

- Mg my
LCoM = Maxa + a7 (1)
where m, and m; are the Christodoulou masses [7] of

the primary and secondary black holes, M = m, + my
is the total initial mass of the BBH system, and Z, and
Zp describe the motion of the black holes’ centers, i.e.,
the simulation coordinate averages over each one of the
black hole’s apparent horizon. With this trajectory, the
translation and boost that best map the system to the
Newtonian center-of-mass frame can then be found by
finding the transformation that minimizes the average
square of the distance between the center-of-mass and the
origin of the corrected frame [6].

While this method for fixing the Poincaré frame has
proven useful, there are certain aspects of this correction
that are concerning. For one, when more post-Newtonian
(PN) terms are included in the Newtonian calculation
of the center-of-mass in Eq. (1), the correction does not
improve and, for higher mass-ratio or precessing systems,
becomes noticeably worse [(]. Apart from this, it is also
worrisome that the frame of these waveforms is being
fixed based on information from the bulk of spacetime,
rather than information from the waveforms themselves,
especially as it has been shown that the coordinate velocity
of the black holes does not accurately correspond to the
asymptotic velocity for complicated systems [8].

A better way to fix the Poincaré frame is to measure
the Poincaré charges for asymptotic quantities and try
to find the Poincaré transformation that changes these
charges in a prescribed way. For example, to map a
general relativistic system to the center-of-mass frame,
one could compute the linear momentum charge and
the boost charge from which the system’s boost and
translation away from the origin can be established. Or,
as we will do in this work, one could instead compute
just the center-of-mass charge and then determine which
Poincaré transformation minimizes this charge.

Apart from the Poincaré frame, however, there is an
additional freedom in general relativity arising from the
extra symmetries of asymptotically flat spacetimes that
extends the usual Poincaré group. This infinite group of
symmetries, which was found by Bondi, van der Burg,

3 This fixing of the Poincaré frame was called a “correction” in the
work of Ref. [0] because the BBH system’s center-of-mass drift is
an unexpected phenomenon in numerical relativity simulations.
It appears to be related to an imperfect boundary condition on
the gauge degrees of freedom at the outer boundary.

Metzner, and Sachs [, 10], is known as the BMS group.*
Fundamentally, the BMS group is a semidirect product
of the usual Lorentz group with an infinite-dimensional
Abelian group of transformations called supertranslations,
which contain the more familiar spacetime translations
as a normal subgroup.

The most straightforward way to understand how a
supertranslation affects coordinates is via the following.
First define the Bondi time uw = ¢t — r. Under an arbitrary
spacetime translation (0t,0%) = (dt,dx, dy,dz), we can
write the corresponding transformation of u as

U/ =Uu— Z Z almnm(ea ¢)7 (2)

<2 m<|L|
where
Qp,0 = \/ZE(%, (33')
2w .
a1+1 = —4/ K(ZRSQ? + idy), (3b)

[4m
Q1,0 = — —0z. (3C)
3
A proper supertranslation «(6, ¢), i.e., a supertranslation
that is not one of the spacetime translations (see Eq. (2)),
then acts on u as

W =u—a(6,9) (4)

for

o= Z Z aémnm(ea (b) (5)

€22 m<||

with ag,m = (—1)™@r,_n, to make sure that u' is real.
Consequently, a supertranslation can be understood as a
direction-dependent time translation on the boundary of
asymptotically flat spacetimes, e.g., future null infinity.
For example, if there exists a network of observers on
a sphere surrounding a source, then ideally they could
combine their received signals with some understanding
of their clocks’ synchronization. At future null infinity,
such a synchronization becomes impossible and we could
supply a separate time offset, i.e., a supertranslation, to
each observer without changing the observable physics.
An outline of how supertranslations transform the typical
gravitational wave quantities, such as the strain h, the
news h, and the Weyl scalars ¥;, can be found in [13, 14].

There are really only two reasonable ways to fix this
supertranslation freedom. The first, and simplest, is to
find the supertranslation that minimizes the difference

4 There is also a proposed generalization of the BMS group, which
promotes the Lorentz transformations to be the infinite group of
local diffeomorphisms on S? [11, 12]. In this work, however, we
will focus on just the BMS group and reserve an examination of
the generalized BMS group for future study.



between a NR waveform and a PN waveform. The second,
which is often the most common in the literature [15-17],
can be understood as follows.

Like fixing the Poincaré frame by making use of the
Poincaré charges, a fairly similar scheme can be executed
to fix a BBH system’s proper supertranslation freedom
by utilizing the proper supertranslation charge. We refer
to the frame related to this supertranslation freedom as
the Bondi frame, while the frame that corresponds to the
whole freedom of our waveforms is called the BMS frame.
Just as the Bondi four-momentum is the charge that is
related to spacetime translations, the supermomentum—
an infinite extension of the usual Bondi four-momentum—
is the charge that corresponds to supertranslations. Thus,
the supertranslation freedom can also be uniquely fixed
by finding the supertranslation that minimizes the proper
supermomentum charge. The Bondi frame under this
transformation is then related to the Poincaré frame that
corresponds to the transformation that minimizes the
three-momentum, i.e., the rest frame. In this case, though,
we call the Bondi frame with minimal® supermomentum
the nice section [17] or the super rest frame.

In this work, we do exactly this. That is, we fix the
Poincaré frame of our asymptotic waveforms by working
with particular Poincaré charges to map the BBH systems
to the center-of-mass frame. We then also fix the proper
supertranslation freedom by finding the supertranslation
that maps the waveforms to the Bondi frame that is ideal
for current observations. Thus, we not only improve upon
the work of [6] by using relativistic charges instead of
Newtonian trajectories, but we also wholly fix the proper
supertranslation freedom, thereby fixing the complete
BMS frame of our numerical waveforms.

Most importantly, we find that the new and improved
fixing of the Poincaré frame is a drastic improvement over
the previous method that uses Newtonian trajectories.
Based on our observations, we conclusively find that the
previous center-of-mass correction appears to have only
approximately worked for the equal mass non-spinning,
aligned spins, and superkick systems, and fails for the
non-equal mass, anti-aligned spins, or precessing systems.
Further, even in the equal mass non-spinning systems
where the previous correction was nearly the same as
the charge-based one, this new method nonetheless shows
obvious improvements, such as reducing the leakage of the
strain (2, 2) mode into other, subdominant strain modes.
We show an example of this improvement in Fig. 5.

Apart from improving the fixing of the Poincaré frame,
we also make a few important observations regarding the
fixing of the supertranslation freedom. Even though it is
often mentioned that the supertranslation freedom can be
fixed by mapping to the super rest frame [15-17], we find
that the most practical way to fix the supertranslations

5 The reason we say minimal rather than no supermomentum is
because of a subtlety having to do with gravitational memory,
which we discuss in Appendix A.

is by mapping our BBH systems to the PN Bondi frame.
This is because LIGO expects numerical waveforms to
agree with PN waveforms during the early inspiral phase
of a BBH merger. Note, however, that for conducting
any kind of analyses on quasinormal modes, the preferred
BMS frame is actually the super rest frame, since this is
the frame expected by the Teukolsky formalism.®

Previously, the BMS freedom of numerical waveforms
has not been important because the SXS collaboration’s
waveforms did not exhibit the displacement memory [18].
However, because waveforms with memory effects can now
be easily produced by numerical relativity [18] or can even
have memory effects added to them via a correction [19],
fixing this Bondi frame has become crucial, seeing as
it is absolutely necessary for performing hybridizations
between numerical and PN strain waveforms. We find that
by mapping numerical waveforms to the PN BMS frame,
we can significantly improve NR/PN strain hybridizations.
Our main result regarding this is shown in Fig. 7.

Last, we also discover that by completely fixing the
BMS frame of our waveforms, we can perform noticeably
better convergence tests of numerical relativity waveforms,
since waveforms from different resolutions can now be
compared while in the same BMS frame.

A. Overview

We organize our computations and results as follows.
In Sec. IT we introduce the four main Poincaré charges
that are useful when examining asymptotic waveforms:
the linear momentum, angular momentum, boost, and
center-of-mass charges. Apart from this, we also discuss
how the center-of-mass charge can be used to obtain the
system’s velocity and translation away from the origin.
Following this, in Sec. III we discuss the two most natural
Bondi frames and conclude that for practical purposes,
the most useful frame to map to is the PN Bondi frame.
Finally, in Sec. IV A and Sec. IV B we present our results
for mapping to the center-of-mass frame as well as the
PN BMS frame and thus illustrate how the BMS frame of
numerical waveforms should be fixed for future analyses
and, most importantly, future surrogate models [20-23].

B. Conventions

We set ¢ = G = 1 and take 7, to be the (—,+,+,+)
Minkowski metric. When working with complex dyads,
following the work of [24], we use

ga = —%(1,1’51110) and ¢4 = —%(1@0509)» (6)

6 This will be covered in a future work.



and write the round metric on the two-sphere S? as qap.

The complex dyad obeys the following properties

qaqd* =1, qap=qadp +qaqs. (7)

Note that this convention differs from the related works
of [18, 19, 25], which in contrast do not include the 1/+/2
normalization factor on the dyads in Eq. (6). We choose
this convention because it makes our expressions for the
asymptotic charges in Eq. (15) more uniform. Nonetheless,
for transparency we provide the conversion between our

qaq® =0,

quantities and those of these previous works in Eq. (13).
We build spin-weighted fields with the dyads as follows.

For a tensor field W4...p, the function

W =Wa.po-pg* ¢ - q° (8)
with m factors of ¢ and n factors of ¢ has a spin-weight
of s = m —n. When raising and lowering spin-weights
we use the Geroch-Held-Penrose differential spin-weight
operators 0 and 9 [20],

ow = (DEWA...BC...D)qA~~qB(jC~~-(quE, (9a)
OW = (DgWa..go..p)g” - ¢P¢% .. .q°q".  (9b)

Here, D4 is the covariant derivative on the two-sphere.
The 0 and 0 operators in spherical coordinates are then

W (0, ) = —\%(sin 8)"% (9 + i csc 00,)

[(sin®) W (0,4)], (10a)
W (0, 6) = —\%(sin 6)~* (D — i csc 0,)
[(sin§)**W(0,¢)] . (10b)

Thus, when acting on spin-weighted spherical harmonics,
these operators produce

1
V2
Vi) = =5 VT35, Vi (110)

0(sYem) = +—= V(= 8)(l+5+1),, Yom, (11a)

We denote the gravitational wave strain” by h, which we
represent in a spin-weight —2 spherical harmonic basis,

h(u,0,¢) = Z hm (w) —2Yem (0, 9), (12)
l,m

where, again, u =t — r is the Bondi time. We denote the
Weyl scalars by Wy_4. The conversion from the convention
of [18, 19, 25] (denoted NR®) to ours (denoted MB?) is

SEVaEE (1)

R® = 25" and OV =

7 We explicitly define the strain as described in Appendix C of [2].

8 NR because this is the convention that corresponds to the outputs
of the SXS simulations.

9 MB because this corresponds to the Moreschi-Boyle convention
used in the works [13, 24, 27] and the code scri [13, 28-30].

Note that we will omit these superscripts and henceforth
assume that everything is in the MB convention.

II. FIXING THE /¢ <2 TRANSFORMATIONS

As discussed in the introduction, for the past few years
the method for fixing the Poincaré frame of BBH systems
in numerical relativity has relied on using the Newtonian
center-of-mass trajectory, i.e., Eq. (1) [2, 5, 6]. While this
has served as a successful first step, we can improve upon
this by using certain Poincaré charges: specifically, the
center-of-mass charge.

We first present the main asymptotic Poincaré charges.
These charges are the linear momentum charge Py, the
angular momentum charge Jg, the boost charge Ky,
and the energy moment charge Fy. Others have just
called Ey the center-of-mass charge, but this is misleading
because Fy really measures the center-of-mass scaled by
the energy of the system. Thus, we instead refer to Ey as
the energy moment charge and reserve Gy to represent
the center-of-mass charge. These charges are computed by
integrating the Bondi mass aspect m, the Lorentz aspect
N, and the energy moment aspect F, which are derived in
the NR convention in Appendix A and Appendix B of [18].
In the MB convention these are

m = —Re [V; +07], (14a)

= - <\111 + 000 + udm + %5 (JO’)) , (14b)
E=N+udm=— (\111 +O’35’+;8(0’5’)) . (14¢)

Consequently, the main Poincaré charges are

1
Py = 7/ W mdo, (15a)
47T S2
Jo=— [ B (8,7)(GgN) dQ,
471' S2
1 _
=— [ Rel[(0V) (—iN)] d, (15b)
471' S2
1
vE o ¢*P (047) (ggN) dQ,
7i S2
1 _
= — Re [(0%) N| dQ, (15¢)
471’ S2
1
Ey = — qAB (04Y) (g (N + udm)) d,
471' S2
1 _
=— [ Re[(00) (N +udm)] d€,
47T S2
= Ky +uPy. (15d)
where €48 is the usual Levi-Civita tensor and ¥ is a real

spin-weight 0 function on the two-sphere. This scalar ¥
is typically taken to be a unique combination of the £ <1
spherical harmonics so as to represent one of the four



Cartesian coordinates t, x,y, z, i.e.,

t=1
=V 47TY(0,0),

r = sinf cos ¢

[4m | 1

y = sin @ sin ¢

A | ¢
Y N ,
3 L@( (-1 (1,+1>)}

cos

(16a)

(16b)

(16¢)

w
I

Y0 (16d)

3
By utilizing some properties of the spherical harmonics,
we can create a four-vector from the projection of a charge
along each Cartesian direction:

1
Al = ﬁA(o,o), (17a)
1 1
A* = ——Re |Aq_1) — A , 17b
Nz € [ (1,-1) (17+1)] (17b)
1 1
AV = ——Im|Aq_) + A , 17¢c
NZTING m[ (1,-1) (1,+1)] (17¢)
1 1
A= ———Rel|A , 17d
Vir V3 € [ (170)} (17d)

where Ay, is the (£, m) mode of the aspect A when A is
written in a spin-weight 0 or 1 spherical harmonic basis.!°
Note that all of these charges and aspects, which we have
defined in Eq. (15), have been previously examined in
earlier works such as [18, 31-34].

As mentioned in the introduction of this section, we
are primarily interested in the center-of-mass charge Gy,
which is closely related to the energy moment charge Ey
in Eq. (15d). By definition, the center-of-mass charge is
the energy moment divided by the energy of the system,

Ey Ey

Gy=—=
) Pt '}/MB’

(18)

where P! is computed according to Eq. (17a) with A = m,
v is the Lorentz factor

S 2
7:,/1+(P/Pt : (19)
and Mp is the Bondi mass [9]
Mp = /=1, PHP". (20)

10 Note that A = m is a spin-weight 0 function and A = —iN, N,
and N + udm are spin-weight 1 functions.

The charge Gy measures the center-of-mass that evolves
linearly as a function of momentum in the absence of
gravitational radiation [34]. The reason why we are mainly
interested in this Poincaré charge is because

Glu=o = (K /¥Ms) lu=o; (21a)
5 d - —
G=— |(K+uP)/(yMp)|
- N I? MB 2 [ ;:| K
=U+uv— —_— = v-vU)| +
YMp {MB (7-9) Mg
~ U + (oscillations about @), (21b)
since
Mp~0, ¥~0, and I.?zO, (22)

in the inspiral and ringdown phases of the BBH merger.'!
Therefore, the intercept of G = (E*, B¥, E7)/P* will be
the center-of-mass of the system at u = 0 and the slope
will be the three-velocity. This means that by fitting a
degree one polynomial to this three-vector, we can obtain
the amount a system is translated and boosted out of
the center-of-mass frame and then apply the opposite
Poincaré transformation to map our waveforms to the
center-of-mass frame.'? Note that these Poincaré charges
in Eq. (15) can also be used to measure properties of the
BBH system or the remnant black hole, as was illustrated
in the recent and related work of [8].

IITI. FIXING THE /¢ >2 TRANSFORMATIONS

We now move on to a discussion about the proper
supertranslation freedom.

A. DMapping to the super rest frame

While it is often mentioned that a system’s Bondi frame
should be fixed by minimizing the supermomentum [16],
current observatories expect their waveform models to
resemble PN expansions. Therefore, even though fixing
a system’s Bondi frame using the supermomentum is a
well-motivated option with unique benefits, we reserve
a discussion of this for Appendix A, since none of the
results that we present involve this technique.

11 We address issues with this assumption in Sec. IV A.

12 While we could also use the boost and linear momentum charges
to obtain these transformations, computing both of these charges
is more computationally expensive than if we just compute the
center-of-mass charge, since there are fewer products of waveforms
that need to be taken when finding Gy.



Name CCE radius q (z, 7, 2) xB: (&, 7, 2)
ql_nospin 292 1.0 (0, 0, 0) (0, 0, 0)
ql_aligned_chi0O_2 261 1.0 (0, 0, 0.2) (0, 0, 0.2)
ql_aligned_chi0O_4 250 1.0 (0, 0, 0.4) (0, 0, 0.4)
ql_aligned_chi0O_6 236 1.0 (0, 0, 0.6) (0, 0, 0.6)
ql_antialigned_chi0O_2 274 1.0 (0, 0, 2) (0, 0, —0.2)
ql_antialigned_chi0O_4 273 1.0 (0, 0, 0.4) (0, 0, —0.4)
ql_antialigned_chi0O_6 270 1.0 (0, 0, 0.6) (0, 0, —0.6)
ql_precessing 305 1.0 (0.487,0.125, —0.327) (—0.190,0.051, —0.227)
ql_superkick 270 1.0 (0.6, 0, 0) (-0.6, 0, 0)
g4_nospin 235 4.0 (0, 0, 0) (0, 0, 0)
q4_aligned_chi0O_4 222 4.0 (0, 0, 0.4) (0, 0, 0.4)
g4_antialigned_chiO_4 223 4.0 (0, 0, 0.4) (0, 0, —0.4)
q4_precessing 237 4.0 (0.487,0.125, —0.327) (—0.190,0.051, —0.227)

TABLE I. Parameters of the BBH mergers used in our results. The mass ratio is ¢ = M4 /Mg, and the initial dimensionless
spins of the two black holes are x4 and xp. These simulations have been made publicly available at [35].

B. Mapping to the PN BMS frame

Besides using the supermomentum to map a system
to its super rest frame, the supertranslation freedom of
waveforms can also be fixed by mapping them to their
corresponding PN Bondi frame. Unlike PN waveforms,
the NR waveforms are finite in length and do not contain

information from the BBH system’s entire past history.

As a result, when numerical strain waveforms that contain
memory are created, either by using Cauchy-characteristic
extraction (CCE) [18, 30] or by correcting extrapolated
waveforms [19], their average during the inspiral phase
will tend to be close to zero. By contrast, post-Newtonian
waveforms typically have a memory contribution that is
monotonically increasing with time and only approaches
zero as u — —oo. Therefore, if hybridizations of the
numerical waveforms are to be made with PN waveforms,
a mapping to the PN Bondi frame is essential to ensure
that the waveforms and their memory contributions can
be properly aligned. While we examined the results of
mapping our systems to the super rest frame, we find
that, because of this hybridization concern, mapping to
the PN Bondi frame is the more sensible procedure for
fixing the Bondi frame. Consequently, in Sec. IV we only
present the results for mapping our various BBH systems
to their corresponding PN BMS frame, as defined by a
PN strain waveform, and reserve a study of the benefits
of mapping to the super rest frame for future work.

IV. RESULTS

For the following results, we numerically evolved a set
of 13 binary black hole mergers with various mass ratios
and spin configurations using the Spectral Einstein Code
(SpEC) [37]. We list the important parameters of these
various BBH systems in Table I. Each simulation contains
roughly 19 orbits prior to merger and is evolved until the

waves from ringdown leave the computational domain.
Unlike the evolutions in the SXS catalog, the full set of
Weyl scalars and the strain have been extracted from
these runs and the waveforms have been computed using

the extrapolation technique described in [24] and the
CCE procedure described in [25, 38]. Extrapolation is
performed with the python module scri [13, 28-30] and

CCE is run with SpECTRE’s CCE module [25, 38, 39].

For the CCE extractions, the four world tube that
are available have radii that are equally spaced between
2X0 and 21X, where Xy = 1/wq is the initial reduced
gravitational wavelength as determined by the orbital
frequency of the binary from the initial data. Based on
the recent work of [19], however, we choose to only use
the waveforms that correspond to the world tube with
the second-smallest radius, since these waveforms have
been shown to minimally violate the BMS balance laws.
For clarity, we provide the world tube radius used for
each system in Table I. All of these 13 BBH systems’
waveforms have been made publicly available at [35].

As mentioned above, the asymptotic strain waveforms
are computed using two methods: extrapolation and CCE.
The first method utilizes Regge-Wheeler-Zerilli (RWZ)
extraction to compute the strain on a series of concentric
spheres of constant coordinate radius and then proceeds to
extrapolate these values to future null infinity Z using
1/r approximations [2, 24, 40-43]. This is the strain
that can be found in the SXS catalog. The other and
more faithful extraction method, which is known as CCE,
computes the strain by using the world tube data provided
by a Cauchy evolution as the inner boundary data for
a nonlinear evolution of the Einstein field equations on
null hypersurfaces [25, 38]. CCE requires freely specifying
the strain on the initial null hypersurface labeled u = 0.
Like [18, 19], we choose this field to match the value and
the first radial derivative of h from the Cauchy data on
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FIG. 1. Example of what the center-of-mass charge looks like
for a system with large center-of-mass velocity, in this case a
q = 4, precessing system. The charges plotted are computed
directly from Eq. (18), where E and P’ are obtained from
Eq. (17) by using the energy moment aspect £ = N +udm and
mass aspect m. We define the peak time to be the peak of the
L? norm of the Geroch supermomentum (see Eq. (A4b)), since
this quantity is a supertranslation-invariant quantity [17, 44].
The waveform used is a CCE waveform.

BBH merger: q4_precessing (see Table I).

the world tube, using the ansatz,

A(04) n B(64)

r r3

h(u=0,r,0%) = : (23)
where the two coefficients A(#4) and B(#*) are fixed
by the Cauchy data on the world tube. Unfortunately,
constructing a satisfactory initial null hypersurface for
CCE is currently an open issue in numerical relativity.
Consequences of this choice manifest as transient effects
arising at early times [18]. We address these in Sec. IVA 1.

As for the extrapolated strain waveforms that we use,
these have been post-processed so that they exhibit the
displacement memory effect and are thus more on par
with the waveforms produced by CCE [19].

Last, when performing our analysis, we predominantly
use the code scri [13, ] to compute BMS charges
and transform asymptotic waveform quantities.

A. /<2 Results

As discussed in Sec. II, a BBH system can be mapped
to its center-of-mass frame by utilizing the center-of-mass
charge G. In Fig. 1, we show this charge for a ¢ = 4,
precessing BBH system (see Table I). We compute the
plotted charges from Eq. (18) by using a CCE waveform.
As can be seen, in the Z, ¢, and 2 directions the average

of the center-of-mass charge is not constant with respect
to the Bondi time. Further, if one imagines tracing these
curves back in time then it can easily be observed that
they begin with a nonzero value. Because of these results,
we may assert that, with time, the BBH system is drifting
through space away from a point that is not the origin.
If the system under consideration were not drifting and
were in the center-of-mass frame, then we would expect
our charges to have both zero slope and zero intercept.
Fortunately, because of the nature of this charge, to map
to the center-of-mass frame one can simply boost and
translate the system by the negative of the charge’s slope
and intercept. In the subsequent discussion, we first check
to see if any our of 13 binary systems, either before or
after the Newtonian center-of-mass correction [0], are in
the center-of-mass frame. After this, we then proceed
to apply our charge-based center-of-mass correction and
evaluate the improvement it has on our waveforms.

1. A note on transient effects

Because numerical relativity simulations are evolved
from imperfect initial data [2], the output waveforms
contain unphysical effects referred to as junk radiation.
In extrapolated waveforms, the junk radiation appears
at early times and typically decays after an orbit or two.
For CCE waveforms, however, the junk radiation tends
to persist longer into the waveform [18]. As a result,
because we examine extrapolated and CCE waveforms,
we perform our analysis on the part of our waveforms
that is three orbits past the start of the simulation, since
the CCE-specific transient effects have decayed by then.
We refer to this time throughout the results as u;.

2. Determining the best method for fixing the Poincaré frame

We now compute the boosts and translations needed
to map the 13 BBH systems to the center-of-mass frame.
We first compute the charges according to Eq. (18). Next,
we define an initial time u; to be three orbits past the
start of the simulation and a final time that is three orbits
before the peak time upcak. We define the peak time to be
the peak of the L? norm of the Geroch supermomentum
(see Eq. (A4b)), since this quantity is a supertranslation-
invariant quantity [17, 44]. We choose this final time to
ensure that we are only working with the inspiral phase
of the binary, rather than the merger phase. Note that
one could fix the Poincaré frame using the remnant BH,
i.e., mapping the kick velocity to zero, but this is not as
instinctive as using the inspiral phase to fix the frame,
even though it would matter for fitting quasinormal modes.
Equipped with the charges and boundary times, we then
linearly fit to the center-of-mass charge in the Z, g, and 2
directions and take the needed boost to be the negative
of the slope and the needed translation to be the negative
of the vertical intercept at u = 0.
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FIG. 2. The convergence of the boost and translation vectors
obtained by fitting to the center-of-mass charge. Here, 3; (o)
represents the boost (translation) obtained after i iterations
of fitting to the charge G, transforming the untransformed
waveform with the fit result, fitting to the new charge, and
then composing that fit with the previous vector. For example,
(1 is obtained from fitting to the charge once, (B2 is obtained
from fitting to the charge transformed using /1 and then
composing that fit with B, etc. Note that we show the result
for q1_aligned_chiO_6 because this simulation exhibits the
slowest convergence out of the 13 systems that we examined.
The waveform used is a CCE waveform.

BBH merger: q1_aligned_chiO_6 (see Table I).

When we first applied this new Poincaré frame fixing,
the improvements that we saw in the extreme systems,

e.g., the ¢ = 4 and fast-spinning systems, were remarkable.

For the simpler systems, however, the improvements were
not as large as we expected them to be. This is because
these systems are already reasonably close to being in
the center-of-mass frame. Thus the measured boosts
and translations are more susceptible to errors that are
introduced by oscillations in the charge and also by the
failure of the assumptions in Eq. (22) to hold because of
non-Newtonian effects. Fortunately, because this method
for mapping to the center-of-mass frame just involves the
computation of charges, it can be iterated. That is, after
the initial transformation is found, it can be applied, and
then the center-of-mass charge can be computed again
from the new asymptotic waveform. With this new charge,

a new transformation can then be found, which may be
composed with the previous transformation to obtain a
more accurate mapping to the center-of-mass frame.

In Fig. 2 we plot the convergence of the boosts and
translations for various iterations of this fitting procedure.
We only show the results for bbh_ql1_aligned_chiO_6
because this system has the slowest convergence of the
13 binaries examined. In this figure, 8; («;) represents
the boost (translation) obtained after ¢ iterations of this
charge fitting process. More specifically, this procedure is

I. Take Gy, @ = 0.

II. If the iteration number i is not 0, transform the
waveform with the Poincaré transformation 3;, &;.

III. Compute G from the transformed waveform.

IV. Obtain 5 and & by fitting to G with a degree one

—

polynomial (5 = slope, @ = vertical intercept).
V. Compute @H = ,5‘, + ,5 and @11 = d; + a.
VI. Repeat.

As can be seen, even for this slowly converging system, the
transformations converge rather quickly. Thus, based on
this simulation, we choose a fixed number of 5 iterations
for every one of our systems. With this many iterations,
the improvements in the simpler systems then become as
large as we would like to see.

8. Comparing the Newtonian trajectory and charge-based
frame fixing methods

We now compare our iterative center-of-mass correction
that uses the center-of-mass charge to the previous version
that uses Newtonian trajectories. In Fig. 3 we show that
of the 13 binaries examined, none of them are exactly
in the center-of-mass frame after applying the correction
that relies on Newtonian trajectories since all of the new
Poincaré transformations are nonzero. More specifically,
we plot two columns, one for the boosts on the left and one
for the translations on the right. In the top row, we plot
the magnitude of these vectors as obtained from fitting to
the center-of-mass charge, which is a proxy for how much
the system fails to be in the center-of-mass frame. In the
middle row, we plot the relative difference between this
charge-based vector Uq, and the vector obtained from the
Newtonian center-of-mass correction vcom. This serves
as a proxy for how much the system fails to be in the
center-of-mass frame, even after the Newtonian correction.
Finally, in the bottom row, we plot the angle between
these two vectors, i.e.,

(24)

Lo Ua  UcoM
AO(Vg, Uoom) = arccos ( ° > .

Ua|  [Fcom|
As can be seen in the top row, the equal mass non-spinning
and aligned systems are reasonably close to being in the



Comparison of previous and new Boost Vectors

Comparison of previous and new Translation Vectors

& [+ L+ & o &
CCE S & | ® CCE .
10 &  EXT o & EXT . -
_ @ ¢
5 ¢ T o R & @
oy & =k f
10~¢ - - ®
10 o o
® o
® ®
107 o ° LI
& & e
T & = 102 o
9 & o ¢ | 1S °
= e = ¢ N
Z 10 g voe
it 1S @ ¢, ¢
| ® [ 100 N 4 N L]
[S] I~} i L &
N 02 2 e § 0, s ¢ &
10° o < o e g e &
—_— $ ¢ g ® — 1 @ . @
,20 1071 & 2 L] o o o e ?
1S 1S o = & *
S -2 5 e
1oy 10 o 1S e
= ¥ S
S . < 10
q 1077 <
&
o
B o o o o o <o & &£ A <o o £ B o o o o o <o £ £ A o o £
= Z F = = = 2 = o = = z 2 = = = = = = gz = @ = = 2
€ § € € § 8 5§ & & g2 § © 8 E 5 © T ©§ 8 € g & g © B 8§
5 B B B BB o o= 5 B o« 5 B 5 5B B OB o 5 B
" & & € & = % = g v = & = & = 3§ 7 = 5 7
- - = £ £ =Z <« £ - = = £ £ £ - £
o o o g 5 g = g o o o g 5 g o g
[ < - = = <
o o o [=2 o o o (=2

FIG. 3. Examining the boost and translation vectors as measured by iteratively fitting to the center-of-mass charge @, which is
computed by using Eq. (17) to obtain the vector components of Eq. (18). In the top row we show the magnitude of these vectors,
which we label 7 with @ = J3 for boosts (left) and & = & for translations (right). In the middle row we compute the relative
error between these vectors and the vectors Ycom, which are obtained by the previous center-of-mass correction that relies on
the Newtonian trajectories of the black holes. In the bottom row we plot the angle between these vectors using Eq. (24).

center-of-mass frame, while the other systems, especially
the ¢ = 4 systems, are not. According to the other rows,
though, because the differences between the vectors are so
large, we realize that the Newtonian method for mapping
to the center-of-mass frame is not nearly as successful as
previously thought. Consequently, it is now evident that
this Newtonian method for mapping a BBH system to its
center-of-mass frame does not achieve its objective and
the method based on the center-of-mass charge, which we
explore in more detail now, is necessary.

4.  Ezamining improvements to waveforms

At this point, we examine how the strain waveforms
change under the center-of-mass charge-based mapping
to the center-of-mass frame. First, though, in Fig. 4
we show how the center-of-mass charge changes under
the Newtonian center-of-mass correction versus the new
charge-based method. What this plot shows is that while
the Newtonian center-of-mass correction only corrects
the & component of the center-of-mass charges for the
g4_precessing system, the new method produces an
average value of exactly zero for every vector component.

In Fig. 5 we show the most important consequence
of improving the fixing of the Poincaré frame by using
asymptotic Poincaré charges. For this example, we show
the strain (2,1) mode of ql_nospin as it is, after the
Newtonian center-of-mass transformation, and after our
new center-of-mass transformation. We show this mode
because it exhibits the largest mismatch (see Eq. (25))
when comparing strains that have been transformed using
both the previous and the new center-of-mass corrections.
Based on PN theory, during the system’s inspiral phase
we expect the frequency of this mode to be half the
strain (2,2) mode’s frequency.!® However, as can be seen
by comparing the original and transformed waveforms,
after correctly mapping to the center-of-mass frame the
frequency of the strain (2, 1) mode is roughly half of what
it was before. This is because, previously, the system
was not truly in the center-of-mass frame so the strain

13 Really we expect this mode to be exactly zero because of the
symmetry of the system; however, because the two spins and the
eccentricity of the black holes in the bbh_q1_nospin simulation are
not precisely zero owing to numerical error, there is an unexpected
nonzero contribution to this mode.
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FIG. 4. Comparing the center-of-mass charge from waveforms
transformed using the Newtonian center-of-mass correction
(red/dashed) to the charge obtained from those transformed
using the charge-based method (black/solid). As a reference,
we also plot the charge obtained from the untransformed
waveforms (blue/dotted). The charges plotted are computed
directly from Eq. (18), where E and P! are obtained from
Eq. (17) by using the energy moment aspect E = N + udm
and mass aspect m. The waveform used is a CCE waveform.
BBH merger: q4_precessing (see Table I).

(2,2) mode was leaking into the (2,1) mode. Note that
in Fig. 5 we have scaled the original waveform and the
waveform transformed with the Newtonian center-of-mass
correction by factors of 1072 and 10~! to make them
more comparable to the waveform transformed with the
charge-based center-of-mass correction.

Last, to show the impact this charge-based method has
more broadly, we provide Fig. 6. This figure shows the
mismatch between the newly transformed waveforms and
both the original waveforms and the waveforms that have

been transformed using the previous Newtonian correction.

In this plot, we compute the mismatch between a mode
of two strain waveforms via

M(h{y s hiem)) =

A
(Pl my> M)

1- )
A A B B
\/ i my> Bty i my> Mo my)

(25)

in which the inner product is given by

A B —
<h(f,m)’h(f,m)> = /

ul

+oo .

h&m)h@m)dm (26)

where u = 400 is the final time of the simulation.
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FIG. 5. The strain (2,1) mode of the original waveform
(blue/dotted, scaled by 1072) compared to the that of the
Newtonian (red/dashed, scaled by 10™") and the charge-based
(black/solid) center-of-mass corrections. In the inset plot we
provide the strain (2,2) mode of the original waveform to
illustrate that unless the charge-based correction is used, the
(2,1) mode exhibits the same frequency as the (2,2) mode.
Note that the time axis of the inset plot matches up with the
main plot’s. The waveform used is a CCE waveform.

BBH merger: q1_nospin (see Table I).

B. /> 2 Results

With the ¢ < 2 modes of our waveforms properly fixed
using the new center-of-mass correction, we now explore
how to fix the ¢ > 2 modes, i.e., choosing a Bondi frame.
As discussed in Sec. 111, there are really only two options:
mapping the systems to their super rest frame or their
PN Bondi frame. As described earlier, we prefer to map
to the PN BMS frame since this tends to best improve the
hybridization between two NR and PN strain waveforms.

To map our various systems to their PN BMS frame,
we begin by creating a 3PN-order strain waveform from
the orbital frequency of the two black holes using the
code GWFrames [28, 29]. To generate this PN waveform,
we obtain the orbital frequency of the system from the
horizon information and evolve it backward in time using
the PN evolution equations. We then simultaneously find
the Poincaré transformation and the 2 < ¢ < 4 super-
translation that minimize the L? norm of the difference
between the strain and the PN waveform. The norm
is computed over the time interval starting at u; and
continuing for four orbits. To perform this minimization,
we use SciPy’s minimize function corresponding to the
Sequential Least Squares Programming algorithm [15]
and define the following function:

I. Take, as inputs, a NR strain, a PN strain, and also
a center-of-mass transformation.
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FIG. 6. The modes that produce the largest mismatches
between the charge-based center-of-mass corrected strains and
both the original strains (blue) and the strains corrected using
the Newtonian center-of-mass correction (red). The mismatch
in each mode is computed by using Eq. (25). As shown in
the plot’s legend, the shape of each point represents the mode

while the color represents the strains used in the mismatch.

Note that the mismatches for the ¢ = 1 non-spinning and
aligned-spin systems are so large because these systems have
a rotation by m symmetry and thus when the charge-based
center-of-mass correction is used the m = odd modes become
much closer to their expected value of zero. The waveforms
used in these computations are CCE waveforms.

II. Consider the ordered list of transformations

. £ = 2 supertranslation,
. time translation,
. frame rotation,

. £ = 3 supertranslation,

T o W N =

. £ = 4 supertranslation.
ITI. Begin with iteration n = 1.

IV. For iteration n, include all transformations from the
above list up to transformation n as free parameters.
Use the findings from iteration n—1 as initial guesses
for the n — 1 transformations.

11

V. Use SciPy’s SLSQP minimize function to find the
collection of n transformations that, when coupled
with the center-of-mass transformation, best map
the NR strain to the frame of the PN strain, i.e., the
transformations that minimize the L? norm of the
difference of the two waveforms, integrated over the
time interval from wu; to four orbits past that time.

VI. Repeat until n = 5.

We find that it is important to start this procedure
with the ¢ = 2 supertranslation, because this tends to
be the largest source of error. Beyond this, however, the
order of the transformations is fairly inconsequential and
chosen as such to minimize run time. Note though that
it is also important to allow the previous transformations
to be free parameters in the next iteration because each
new transformation tends to influence the previous ones.

With this function, we then run the iterative procedure:

I. Find the center-of-mass transformation that maps
the NR strain waveform to the center-of-mass frame
using the charge-based center-of-mass correction.

II. Provide this transformation and the NR and PN
strain waveforms to the minimizing function.

ITI. Apply the optimized BMS transformation to the
raw NR strain waveform and find the center-of-mass
transformation needed to map this new waveform to
the center-of-mass frame.

IV. Compose this new transformation with the original
center-of-mass transformation and then repeat steps
II. - IV. with the previous BMS transformation as
an initial guess until a desired precision is obtained.

We find that by running this procedure four times we
can obtain rather impressive alignments between the input
NR and PN strain waveforms for most of our systems.
We choose to run this method, rather than optimizing
over all BMS transformations, because this method not
only produces the best alignment, but it also tends to
keep the system much closer to its center-of-mass frame.

In Fig. 7, we show the results of mapping the various
CCE and extrapolated waveforms from our 13 systems to
their corresponding PN BMS frame. In red, we show the
initial misalignment. In blue, we show the misalignment
if the usual alignment procedure is performed, i.e., finding
the time translation and frame rotation that best aligns
a PN strain waveform to a NR strain waveform that has
undergone the previous center-of-mass correction. Finally,
in green, we show the misalignment after using the new
BMS frame alignment procedure. As is clearly illustrated,
by capitalizing on the full BMS freedom of NR waveforms
one can perform substantially better alignment between
NR and PN strain waveforms. Apart from this, though,
one can also observe the failure of the PN waveform to
accurately model the BBH system, e.g., as the total spin
or the mass ratio of the system increases, or if the system
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Errors before and after mapping to PN BMS Frame
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FIG. 7. Comparing the BMS alignment results between NR and PN strain waveforms. In red, we show the initial misalignment.
In blue, we show the misalignment if the usual alignment procedure is used, i.e., finding the time translation and frame rotation
that best aligns an NR strain waveform that has undergone the previous center-of-mass correction to a PN strain waveform.
Finally, in green, we show the misalignment after the new BMS frame alignment procedure has been used, that is, finding the
BMS transformation (up to £ = 4) that minimizes the average L® norm of the difference of the NR and PN strain waveforms.

Note that the measure of this misalignment, ||f(u, 8, #)||?, is defined to be || f(u,8, ¢)||*> =

is precessing, the success of the BMS alignment between
the NR and PN strains tends to worsen. This is expected,
however, since the PN waveform is only of 3PN order.
Regardless, this shows that not only can the Bondi frame,
and really the whole BMS frame, be fixed by utilizing a
PN strain waveform, but doing so is critically important
for aligning, and thus hybridizing, NR and PN waveforms.

With our NR waveforms now optimally mapped to the
PN BMS frame, we perform strain hybridizations between
NR and PN to illustrate the operations this alignment
procedure allows for. To create these hybridizations, we
use the smoothing function

0 z <0,
flx) = (1+exp[ﬁ+%])_l 0<z<l1, (27)
1 x> 1.

so that before the hybridization interval, which is the
same as the alignment interval, the hybrid is equal to the
PN waveform and after it is equal to the NR waveform.

w1 +four orbits fsz ffdQ du

w1

Put differently, we build the hybrid waveform AMWPrd vig

phybrid _ pPN (u) (RNR — RPN (28)

Uz — U1

where uy is the time that is four orbits past .

In Fig. 8, we show three plots, one for each of the
strain (2,2), (2,1), and (2,0) modes. In each plot, we
compare the hybrid waveform to the NR and PN strains
for simulation q4_aligned_chiO_4. In each top panel,
we show the strain modes, while in each bottom panel,
we show the absolute error between the hybrid and the
NR and PN strain waveforms. As is expected from our
alignment results in Fig. 7, there is fairly impressive
agreement in every mode. Furthermore, the plot of the
strain (2, 0) mode shows that the initial value of the hybrid
now agrees with PN, i.e., it exhibits the memory that
we expect to be there due to the emission of radiation
throughout the entire past history of the binary’s inspiral.
Apart from these important positive results, though, there
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FIG. 8. The NR and PN strain hybrid. We present three plots,
one for each of the (2,2), (2,1), and (2,0) modes. In each plot,
in the top panel we show the NR waveform (black/solid), the
PN waveform (blue/dashed), and also the hybrid waveform
(orange/dotted), while in the bottom panel we plot the absolute
error between the hybrid waveform and both the NR waveform
(black) and the PN waveform (blue). In each panel, we also
show the hybridization interval in purple. The NR waveform
in each of these plots is a CCE waveform.

BBH merger: q4_aligned_chi0O_4 (see Table I).
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FIG. 9. Illustrating a caveat about NR and PN hybridizations,
as shown through the strain (2,1) mode. In the top panel
we plot the NR waveform (black/solid), the PN waveform
(blue/dashed), and also the hybrid waveform (orange/dotted),
while in the bottom panel we plot the absolute error between
the hybrid waveform and both the NR waveform (black) and
the PN waveform (blue). In each panel, we also show the
hybridization interval in purple. See the text for more details.
The NR waveform in this plot is a CCE waveform.

BBH merger: q1_nospin (see Table I).

is one minor caveat regarding this hybridization procedure
that is worth mentioning to avoid confusion.

Recall that when mapping an NR strain waveform to its
corresponding PN BMS frame, we apply certain 2 < ¢ < 4
supertranslations. Because supertranslations also affect
the Bondi time u, however, when we supertranslate the
strain we not only have to act on it with the supertransla-
tion, but we also have to interpolate the waveform on to
a new series of Bondi times. So, when applying a super-
translation with only one non-zero mode, not only will
that mode of the strain change, but so will every other
mode because of the time interpolation. The reason why
this is important is illustrated in Fig. 9.

In Fig. 9, we show the (2,1) mode of the strain hybrid
for simulation q1_nospin. Based purely on symmetry, we
would normally expect this mode to be zero, but because
of numerical error, the spins and eccentricity of this system
are not exactly zero. We therefore observe non-zero values
in this mode of the NR waveform, even though they are
negligible. Thus, the (2,1) mode of the hybrid looks a bit
strange because of this difference between NR and PN.

Apart from this, however, one may also notice that
the zero average value of the PN strain is not matched
by the non-zero average of the NR strain. This oddity
results from the supertranslation’s broader influence on
the whole of the strain waveform because of the needed
time interpolation, as mentioned earlier. In other words,



Final Center-of-Mass Transformations

)
-8 CCE &
10 & ]
& EXT
_ &
1079 a dh
&
S &
10710 o
&
k]
10711
& - & 7
1075 &
o
- &
107° &
<) &
3
1071 ] @
o>
1078
s N ¥ O O F © w0 4 g F =+ 0
BEcocggsosgg iz sg g £
& 5 £ § £ § 5 &€ 5 & &2 5 8
50000008&5008
-~ 2 88 ¥ ¥ g S = <« g g o
3 8 & £ £ £ A PR o 2 2 &
& & B B B B o B o
- = = ¥ ¥ = <+, B
o o o g g Z S
— o~ <t
o o o [op

FIG. 10. The magnitudes of the boosts and translations
needed to map the NR strains in the PN BMS frame to their
center-of-mass frame. The reason these are not exactly zero
is because a few of the BMS transformations that are not
involved in the center-of-mass correction do not commute with
the center-of-mass transformation, causing the system to be
pushed slightly away from the center-of-mass frame to obtain
better alignment with the PN strain waveform. Nonetheless,
these transformations are fairly negligible, especially when
compared to those in the top plots of Fig. 3.

supertranslating the (2,1) mode away from an average
of zero improves the error in other modes more than
it worsens the error in the (2,1) mode. Consequently,
while this kind of behavior in the hybridized waveform is
certainly undesirable, it is a natural consequence of the
PN waveform not being a perfect theoretical model for
the numerical BBH system. Furthermore, we note that
this behavior only occurs in modes whose amplitude is
rather negligible, i.e., 1076 or less.

It is also fairly important to note that, because the
center-of-mass transformation does not commute with the
other BMS transformations, this procedure of mapping to
the PN BMS frame does not exactly map our systems to
the center-of-mass frame, even though they are very close.
We illustrate this in Fig. 10, which shows the remaining
boosts and translations needed to map the waveform in the
PN BMS frame to its center-of-mass frame. As is shown,
the necessary boosts and translations are nearly zero,
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especially when compared to the transformations in the
top plots of Fig. 3. Therefore, we consider this mapping to
the PN BMS frame to be remarkably successful, especially
since the improvements in Fig. 7 are so notable.

Finally, we show our last result regarding the benefit of
utilizing the whole BMS freedom of numerical waveforms.
When examining physical quantities that are output by
numerical relativity, it is important to run convergence
tests to ensure that conclusions can be made with respect
to numerical error. In Fig. 11 we show how convergence
tests can be improved by mapping waveforms that are
from simulations of different numerical resolutions to
the same BMS frame before they are compared with
one another. To do this, we perform the same iterative
process as described earlier, but we now optimize over
every BMS transformation, rather than everything but the
center-of-mass transformation. In red, we show the initial
misalignment, while in green we show the misalignment
after the BMS frame alignment procedure. As is shown,
the improvements are relatively minor, but could still
prove to be important for numerical simulations run with
newer codes, such as SpECTRE [39], which will be more
accurate than the SXS collaboration’s current code SpEC.

V. CONCLUSION

Like any physical system, understanding the frame that
a binary black hole merger is in relative to the observer
is essential to ensure that any analyses on the data are
performed properly and no misleading assertions are made.
For gravitational-wave physics, fixing the frame is not as
simple as fixing the Poincaré frame, since the symmetries
of asymptotically flat spacetimes are characterized by an
infinite extension of the Poincaré group: the BMS group.

Currently, gravitational-wave physicists who analyze
models of gravitational waves expect those models to be
in the center-of-mass frame and the PN Bondi frame,
since this is the BMS frame that analytic models are in.
However, the waveforms that are currently produced by
numerical relativity—the supplier of the most accurate
models of gravitational waves—typically are not in such
a frame because of an unexpected center-of-mass drift
in numerical simulations and a lack of initial data that
contains information about the entire past history of
the binary black hole’s inspiral. Consequently, they are
instead in some other BMS frame. But with a proper
understanding of the BMS group, one can post-process
these waveforms and map them to the desired BMS frame
after the BBH simulation is complete. As of now, such a
post-processing technique is used for the Poincaré frame
by using the Newtonian center-of-mass [0], but there is
no such post-processing for the Bondi frame.

In this paper, by utilizing asymptotic Poincaré charges,
i.e., the center-of-mass charge (see Eq. (18)), we show
that this method that relies on Newtonian trajectories
for mapping to the center-of-mass is not as successful as
previously thought. As a result, we develop an improved
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FIG. 11. Comparing the BMS alignment results between a high resolution and a lower resolution numerical relativity waveform.
In red, we show the initial misalignment, while in green, we show the misalignment after using the new BMS frame alignment:
that is, finding the BMS transformation (up to £ = 4) that minimizes the average L? norm of the difference of the two waveforms.

Note that the measure of this misalignment, ||f(u, 6, $)||?, is defined to be ||f(u, 0, $)||* = fu1+f°ur orbits f52 f £ dQdu.

procedure for fixing the Poincaré frame, which shows large
benefits in terms of exhibiting the expected behavior in
the asymptotic Poincaré charges and also in minimizing
certain modes of the strain waveform that are expected
to be zero because of axisymmetry.

We also found that we can meaningfully fix the whole
BMS frame of our numerical waveforms by mapping them
to their corresponding PN BMS frame using a 3PN-order
strain waveform. With this BMS frame fixing procedure,
we observe that we can produce much more favorable
hybridizations between NR and PN strain waveforms
than if one were to use an alignment scheme that only
utilized the Poincaré transformations. Last, we also find
that such a BMS frame alignment will prove important
for future numerical relativity codes that will be able to
run simulations at higher resolutions and will need to
properly test the convergence of their waveforms.

With this new method of fully fixing the BMS frame of
asymptotic waveforms, many important improvements to
gravitational wave modeling can be made. For example,
by correctly mapping to the center-of-mass Poincaré frame
and PN BMS frame, we can produce much better PN

ul

and NR hybridizations. Furthermore, because we can
now ensure that waveforms are in the same BMS frame,
surrogate models built from such waveforms should be
more accurate since they are no longer trying to link
waveforms in radically different BMS frames. It would be
very interesting to see how parameter estimation using an
NR surrogate changes depending on whether or not the
waveforms used to build the surrogate have been mapped
to a consistent BMS frame, such as the PN BMS frame.
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Appendix A: Fixing the supertranslation freedom
with the Moreschi supermomentum

As mentioned earlier, an alternative method for fixing
the Bondi frame of NR waveforms, apart from mapping
to the PN BMS frame, is to map to the super rest frame.
Therefore, since this technique could prove rather useful
in future analyses—such as quasinormal mode fitting—
we now briefly illustrate how to perform this procedure.
According to Moreschi [15, 16], a reasonable choice for
the supermomentum is

UM, 0,0) =3 > Ui (w)Ym(0,6), (A1)
>0 m<[¢|
where
M (u) = _\/% y Yo UM () dQ, (A2)
and
WM () = Uy + 06 + 0%, (A3)

While this is the supermomentum that correctly defines
the Bondi frame, it is important to note that there are
many other supermomenta that have been proposed in the
literature, e.g., the Bondi-Sachs (BS), Geroch (G), and
Geroch-Winicour (GW) supermomenta [17, 31, 46, 17]

UBS(y) = Uy 4 00, (Ada)
TS (u) = Uy + 00 + (0°6 — 0°0), (A4b)
VW (4) = Uy + 06 — B%0. (Adc)

While all of these agree on their ¢ < 2 modes,!* the
Moreschi supermomentum is the supermomentum that
can most easily be used to map to the super rest frame
for reasons discussed in [15—-17, 48].

It is important to note, however, that

A\IIME/ UM (u) du

1

- / (s + [05 +0%]) + |6[2] du

1

Uz
_ / 16[2 du
w1

Uy = — [05 + 0%7]

(A5)

since

(A6)

14 The £ < 2 modes of the supermomenta in Eq. (A4) all correspond
to the usual Bondi four-momentum.
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by the Bianchi identities. Consequently, since Eq. (A5)
is proportional to the radiated energy, this means that
the Moreschi supermomentum can never be made zero so
long as there is energy radiated in gravitational waves.'®

With UM a similar procedure as the one presented in
Sec. IV B for mapping to the PN BMS frame can then be
performed. But, instead of minimizing the L? norm of
the difference of NR and PN strain waveforms, one would
simply find the proper supertranslation that minimizes
the L2 norm ¥M at a certain time or over some finite
time interval, such as the ringdown phase.

15 This also corresponds to the electric part of the null memory [18].
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