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Quasi-normal mode (QNM) modeling is an invaluable tool for studying strong gravity, characterizing
remnant black holes, and testing general relativity. To date, most studies have focused on the dominant
(2, 2) mode, and have fit to standard strain waveforms from numerical relativity. But, as gravitational
wave observatories become more sensitive, they can resolve higher-order modes. Multimode fits will
be critically important, and in turn require a more thorough treatment of the asymptotic frame
at I +. The first main result of this work is a method for systematically fitting a QNM model
containing many modes to a numerical waveform produced using Cauchy-characteristic extraction,
which is known to exhibit memory effects. We choose the modes to model based on their power
contribution to the residual between numerical and model waveforms. We show that the all-mode
mismatch improves by a factor of ∼ 105 when using multimode fitting as opposed to only fitting
(2,±2, n) modes. Our second main result addresses a critical point that has been overlooked in the
literature: the importance of matching the Bondi-van der Burg-Metzner-Sachs (BMS) frame of the
simulated gravitational wave to that of the QNM model. We show that by mapping the numerical
relativity waveforms to the super rest frame, there is an improvement of ∼ 105 in the all-mode
strain mismatch in the presence of memory, compared to using the strain whose BMS frame is not
fixed. We illustrate the effectiveness of these modeling enhancements by applying them to families of
waveforms produced by numerical relativity, and comparing our results to previous studies.
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I. INTRODUCTION

When in a vacuum, a black hole can be considered one of
the simplest objects in the universe, since it is fully charac-
terized by its mass and angular momentum. Despite this
simplicity, black holes continue to be challenging to study
with a multitude of important and unanswered questions
concerning them [1]. Currently, a rather promising means
of studying black holes is through gravitational wave as-
tronomy, i.e., using observations of gravitational waves
emitted by binary black hole (BBH), black hole-neutron
star (BH-NS), and possibly binary neutron star (BNS)
mergers to study properties of the perturbed remnant
black holes. While the waveform that is emitted during
the merger phase is challenging to model and requires the
aid of numerical simulations [2–6], the radiation emitted
by the remnant black hole during its ringdown phase is
expected to oscillate at a certain set of well-understood
frequencies, called quasi-normal mode (QNM) frequencies,
until the remnant black hole settles into a final state of
equilibrium [7].
Fortunately, these QNM frequencies can be computed

using perturbation theory and are completely determined
by the remnant’s mass and spin, thereby allowing for a
thorough analysis of the remnant black hole’s properties,
provided the QNM model is used properly when fitting
to the observed gravitational waves. Often, these QNMs
are labeled by the numbers {`,m, n}, where (`,m) are
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the angular numbers that correspond to spin-weighted
spheroidal harmonics (see [8]) and n = 0, 1, . . . is the
overtone number that sorts the QNM frequencies in order
of decreasing damping timescales, with the fundamental
n = 0 mode being the least-damped mode.

Currently, the majority of gravitational wave analyses
predominantly focus on fitting QNM models to just the
fundamental (2, 2) mode, with recent studies furthering
this with overtones, retrograde modes, and mode-mixing
effects [9–17].1 Despite this, third-generation, ground-
based detectors such as the Einstein Telescope (ET) and
Cosmic Explorer (CE) are expected to observe roughly
102 − 104 events per year with ringdown signals that will
be strong enough to exhibit various higher-order mode
contributions, which, until now, have not been systemati-
cally studied [18, 19]. Consequently, being able to include
higher-order modes in QNM models is vitally important
for future analyses, since this will be essential for ensuring
that the dynamics of the observed remnant black holes
are accurately captured and measured. Furthermore, the
Laser Interferometer Space Antenna (LISA) will be even
more sensitive to the ringdown phase of compact mergers,
thereby allowing for even more inclusive multi-frequency
ringdown studies that may aid with black hole astronomy
and testing various theories of relativity [20–22].

Apart from the clear importance of including overtones,
retrograde modes, mode-mixing effects, and higher-order
modes in analyses of gravitational waves that are emitted
during ringdown, there is one other crucial component
to QNM modeling that is absent in prior QNM studies:
ensuring that the waveforms and the QNM model are in
identical Bondi-Metzner-Sachs (BMS) frames. Until now,
studies that have compared numerical relativity (NR)
waveforms to QNMs have not considered the frame of
their waveforms during the ringdown phase. While many
of them have used NR waveforms whose inspiral phase
has been mapped to the center-of-mass frame [3, 23],2
this is very different from mapping the ringdown phase
to a certain frame, such as the center-of-mass frame of
the remnant BH. Nonetheless, even if one were to map
the remnant to the center-of-mass frame, rather than the
inspiraling BHs, this procedure would still be lacking due
to a subtle, but important feature of relativity. Namely,
the fact that the symmetry group of future null infinity
I + is not the Poincaré group, but instead the infinite-
dimensional BMS group [25, 26].
Fundamentally, the BMS group is just an extension

of the Poincaré group, which promotes the subgroup of
spacetime translations to an infinite-dimensional group
of transformations often referred to as supertranslations.
When working with Bondi coordinates (u ≡ t− r, r, θ, φ),
these supertranslations can be understood rather simply

1 By mode-mixing effects, we mean the mixing that occurs when
writing a QNM model in a spherical harmonic basis, rather than
its preferred spheroidal harmonic basis.

2 See [24] for an improved way to map to the center-of-mass frame.

as being direction-dependent time translations, with the
spacetime translations as a normal subgroup. Namely,
it transforms the time coordinate u→ u− α(θ, φ), with
α being an arbitrary function. Therefore, when fitting
QNMs to a waveform, one not only needs to map to the
center-of-mass frame with the remnant BH’s spin aligned
with the positive z-axis, i.e., fixing the Poincaré frame,
but they also need to fix the supertranslation freedom of
their waveforms to ensure that comparisons with QNMs
are meaningful. Using an incorrect BMS frame leads
to two effects that are sources of errors in the fits: the
waveform is shifted and settles down to a nonzero value,
and there is a mixing of modes that is distinct from the
spherical-spheroidal mixing mentioned before [24, 27].
Across this work, we perform QNM fits by including

every one of the important aforementioned components
to modeling NR ringdowns with QNMs, i.e., overtones,
retrograde modes, mode-mixing, higher-order modes, and
BMS frame fixing. More specifically, we simultaneously
fit various modes over all angles on the two-sphere while
also accounting for the mode-mixing that occurs because
NR waveforms are in a spherical harmonic basis, while
our QNM model is in a spheroidal harmonic basis. When
trying to model such a large number of modes and their
overtones, we must choose which modes to model. We
do this systematically by examining which modes in our
model contain the largest portion of unmodeled power
(see Sec. III for more detail). Apart from this, we also map
our NR waveforms to the BMS frame that is expected
by the QNM model, namely, the super rest frame (see
Sec. II B for more detail) [24, 28–30].3 We therefore, for
the first time, create a QNM model by choosing modes
based on their unmodeled power and fit said model to a
NR waveform that has been properly mapped to the same
BMS frame as is expected by the Teukolsky formalism [7].
We find that by carrying out this procedure, i.e., fitting
over the whole two-sphere and accounting for BMS frames,
we can drastically enhance previous results, such as those
of Giesler et al. [9] and Cook [10], by both reducing
mismatches between NR waveforms and QNM models by
a factor of 105 as well as improving parameter estimates of
the remnant black hole’s characteristics by half an order
of magnitude using QNMs.
We present our computations and results as follows.

In Sec. II, we outline the mathematical conventions for
waveform modeling that is used throughout the paper.
Furthermore, we also discuss the reason why fixing the
BMS frame is important and present how we will map
our waveforms to the super rest frame. Next, in Sec. III,
we discuss our greedy algorithm for choosing modes to
include in our QNM model and highlight the importance

3 Note that in this work when we refer to mapping a waveform
to the super rest frame we really mean simultaneously aligning
the remnant BH’s spin with the positive z-axis and mapping to
the remnant BH’s center-of-mass frame as well as the super rest
frame [24].
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of multimode fitting for ringdown modeling. We also show
how multimode fitting affects the mismatch between a
NR waveform and a QNM model. Finally, in Sec. IV we
show the importance of mapping the remnant black hole
to the super rest frame and the consequences of using the
correct BMS frame when fitting to QNMs.

II. FORMALISM

The remnant black hole formed from a BBH merger
is well-described as a supertranslated Kerr metric with
(potentially large) perturbations, which decay with time.
As shown by Teukolsky in 1973 [7], applying perturbation
theory to the Kerr spacetime, one acquires a decoupled
“master equation” that describes linear curvature perturba-
tions of the black hole. The Teukolsky partial differential
equation also separates into temporal, radial, and angular
ordinary differential equations. The oscillatory yet decay-
ing modal solutions are the QNMs, and the spacetime
after merger is modeled as a linear superposition of many
of these QNMs. Imposing appropriate conditions of decay
(at future null infinity, I +) and regularity (at the future
horizon and poles) quantizes the allowed complex QNM
frequencies [31]. One finds the frequencies, separation con-
stants, and angular wavefunctions simultaneously, either
via Leaver’s original approach of infinite continued frac-
tions [31], or a more recent spectral eigenvalue approach of
Cook and Zalutskiy [10, 32]. The spectral approach finds
the angular mode shapes—the spin-weighted spheroidal
harmonics—as a decomposition in spin-weighted spher-
ical harmonics. We obtain the QNM frequencies and
spherical-spheroidal decomposition coefficients from the
open-source Python package qnm [33].
In this study, we are exclusively interested in working

with complex waveforms, like the strain h,4 which are
decomposed into spin-weight −2 spherical harmonic bases
and live on future null infinity I +. We write these
waveforms as, e.g.,

h(u, θ, φ) =
∑

`≥2,|m|≤`

h`m(u) −2Y`m(θ, φ). (1)

The spin-weighted spherical harmonics of fixed spin-weight
s form a complete and orthonormal basis on the two-
sphere [34, 35],

∫

S2

(sY`m)∗ sY`′m′ dΩ = δ``′δmm′ , (2)

where ∗ denotes complex conjugation and the differential
dΩ = d cos θ dφ is the standard volume element on the
two-sphere. In the future we will drop the parentheses.5

4 We explicitly define the strain as described in Appendix C of [3].
5 We include them here to illustrate the fact that (sY`′m′)

∗ has
spin weight −s.

A. QNM formalism

For a given black hole spin |a| < M , and choice of angu-
lar numbers (`,m), there are an infinite number of QNM
frequencies satisfying the boundary conditions. These
are all in the lower half-plane, Im[ω] < 0, as required by
stability. The symmetry of the equations means that if
ω`m is a QNM frequency, then so is −ω∗`,−m; this is a
“mirror” symmetry between the left and right half-planes.
This leads to the nomenclature (see also Table I of [17])

• “ordinary” mode: Re[ω] > 0,

• “mirror” mode: Re[ω] < 0.

Because of this symmetry, much of the QNM literature
has focused on just the ordinary modes, since the mirror
modes can be recovered via the transformation {m →
−m,ω → −ω∗}. Within each family, there are still an
infinite number of overtones. Thus to uniquely identify
each solution, we label the mode ω±`mn with {`,m, n, sign},
where sign = sgn(Re[ω]) is either ±1; and n = 0, 1, . . .
is the overtone number, ordered by the magnitude of
Im[ω]. The least-damped n = 0 mode is often called the
fundamental mode or zeroth tone while the n > 0 modes
are referred to as overtones [36].

We also introduce here the terminology of prograde and
retrograde modes. There are prograde and retrograde
modes in both the right and left (mirror) half-planes. A
QNM is labeled prograde if its wavefronts circulate around
the BH in the same sense as its rotation. Since a QNM
solution goes as ∝ exp(−iωt+ imφ), we see that surfaces
of constant phase circulate in the positive φ direction
when

• “prograde” mode: sgn(m) = + sgn(Re[ω]),

and in the negative φ direction when

• “retrograde” mode: sgn(m) = − sgn(Re[ω]).

Modes with m = 0 cannot be labeled as either prograde
or retrograde. This is demonstrated in Fig. 1.
When a perturber is corotating with the spin of the

black hole, it dominantly excites the prograde modes.
For most binary coalescences, the remnant spin ends up
with a positive projection onto the direction of the orbital
angular momentum at plunge; thus the prograde modes
are expected to be most important. In this study, we
found that the power of m 6= 0 retrograde modes was a
very small fraction of the total power, but we nonetheless
include them to provide a more complete picture of QNM
modeling and attain marginally higher accuracies. Note
though that form = 0 modes, neither of the pair of mirror
modes is dominant, so both must be included in the fits.

In addition to the frequency, there is also an associated
angular mode distribution for a given QNM, which is
given by a spin-weighted spheroidal harmonic function
sS`m(θ, φ; c) that solves the separated angular equation [7].
Here θ and φ represent the polar and azimuthal angles,
and crucially this is a coordinate system where the black



4

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

Re[Mω]

0.0

0.1

0.2

0.3

0.4

0.5
−

Im
[M

ω
]

` = 2, n = 0

` = 2, n = 1

` = 2, n = 2

` = 3, n = 0

` = 3, n = 1

Ordinary/mirror/prograde/retrograde QNM frequencies (a = 0.7M)

−3

−2

−1

0

1

2

3

V
al

u
e

of
m

FIG. 1. Right-pointing triangles are prograde modes, left-
pointing triangles are retrograde. Note that prograde and ret-
rograde modes are present both in the left half-plane (so-called
“mirror” modes) and the right half-plane (ordinary modes).

hole is at rest and its spin vector is along the θ = 0
direction.

The complex oblateness parameter c = aω`mn is deter-
mined by both the QNM frequency and the BH’s spin
parameter a = |J |/M , with 0 ≤ a < M for a horizon to
exist. When c = 0, a spheroidal harmonic reduces to a
spherical harmonic. For a fixed value of c which is purely
real or imaginary, we get a complete and orthonormal
basis of oblate or prolate spheroidal harmonics. However,
we have complex values of c, and a different c associated
to each QNM, so they no longer form a complete basis.
Therefore we choose to work in the complete basis

of spin-weighted spherical harmonics. Each spheroidal
harmonic can be decomposed as a series of spherical
harmonics with the same m but different ` as

sS`′m(θ, φ; c) =
∑

`

C``′m(c) sY`m(θ, φ), (3)

where the C``′m(c) functions are called the spherical-
spheroidal mixing coefficients [13]. Here we follow the
conventions of [32], as implemented in [33]. These conven-
tions are that

∑
` |C``′m|2 = 1, and that C``′m is purely

real when ` = `′. In the case where c = 0, we then have
C``′m(0) = δ``′ , i.e., sS`′m(θ, φ; 0) = sY`′m(θ, φ).

With these spheroidal harmonics in mind, we can now
write the general ansatz for the strain of a ringing black
hole at future null infinity, hQ(u, θ, φ). This ansatz is
simply a linear combination of QNMs

hQ(u, θ, φ) =
∑

`′,m,n,±

A±`′mne−iω
±
`′mn

(u−u0)

−2S`′m(θ, φ; aω±`′mn), (4)

where the A±`′mn are complex amplitudes for each QNM
and u0 is a freely-specified start time of the QNM model.

Although these amplitudes transform in a simple way
under translations of the retarded time coordinate u and
rotations about the z-axis, they are not rotated by the
Wigner-D matrix under more general rotations.

Now insert the spherical-spheroidal decomposition from
Eq. (3) into the spheroidal ansatz of Eq. (4), rewriting it
as

hQ(u, θ, φ) =
∑

`′,m,n,±

[
A±`′mne−iω

±
`′mn

(u−u0)

∑

`

C``′m(aω±`′mn)−2Y`m(θ, φ)

]
. (5)

Since this is now in the spin-weighted spherical harmonic
basis, it is ideal for modeling numerical relativity results.
Writing the QNM ansatz hQ(u, θ, φ) in spin-weighted
spherical harmonics as in Eq. (1) and (using completeness)
matching up the coefficients of −2Y`m(θ, φ), we readily
find that the spherical mode-decomposed analytical QNM
model is

hQ`m(u) =
∑

`′n,±

A±`′mne−iω
±
`′mn

(u−u0)C``′m(aω±`′mn) . (6)

These hQ`m’s do indeed rotate under the Wigner-D matrix
since they are expressed in the spin-weighted spherical
harmonic basis [37]. Such a rotation is explicitly shown
by Eq. (12) of [10] with a couple of subtle differences
between that paper and this one. In this work, we use the
conventions of [32], where C is the spherical-spheroidal
mixing coefficient. Additionally, we do not express ω− or
C(aω−) in terms of their positive counterparts, via

C``′m
(
aω−`mn

)
= C``′m

(
−a
(
ω+
`,−m,n

)∗)
(7)

C``′m
(
aω−`mn

)
= (−1)`+`

′
C∗`,`′,−m

(
aω+

`,−m,n

)
. (8)

Using this identity, we can restate our Eq. (6) to look like
Cook’s Eq. (12) [10]. Regardless of the way one writes
down this mode-decomposed analytical model, it allows us
to consider a ringing black hole with its spin axis oriented
in any direction by rotating hQ`m.

B. Importance of BMS frames

One important takeaway from the functional form of
the QNM model hQ`m(u) in Eq. (6) is the fact that

lim
u→+∞

hQ`m(u) = 0. (9)

That is, hQ`m(u) tends to zero at late times, approaching i+.
Consequently, whenever we fit this model to a waveform,
our waveform should also decay to zero as the retarded
time approaches +∞ in order to obtain reasonable results.
What some readers may not be familiar with is that

gravitational waves need not be, and often are not, zero as
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u→ +∞, due to an effect which is commonly called grav-
itational memory [38–41]. Fundamentally, gravitational
memory can be understood as a persistent physical change
to spacetime that is induced by the passage of transient
radiation. While there are various types of gravitational
memory effects with varying properties (see [42, 43] for
more thorough explanations), the one that will strongly
impact our ability to model the ringdown of a black hole
with QNMs is the displacement memory effect. This is
because, unlike the other gravitational memories, the dis-
placement memory uniquely corresponds to an overall net
change in the strain between the two points i0 and i+;
that is, the difference ∆ = h(u → +∞) − h(u → −∞).
Consequently, the strain need not return to zero, pro-
vided that the memory is nonzero and the strain’s value
at i0 does not cancel the memory’s value. Fortunately, it
turns out that this important problem regarding gravita-
tional memory is only a misunderstanding of what frame
our perturbed black hole should be in for proper QNM
modeling.

As has been understood since the 1960s, the symmetry
group of asymptotic infinity is not the usual Poincaré
group, but a group with a richer structure called the
Bondi-Metzner-Sachs (BMS) group [25, 26]. The BMS
group is a semidirect product of the usual Lorentz group
with an infinite-dimensional group of transformations
called supertranslations, which are angle-dependent time
advances/delays that contain the familiar spacetime trans-
lations as a subgroup. Fundamentally, supertranslations
act on the Bondi coordinates (u, r, θ, φ) as

u′ = u− α(θ, φ). (10)

and the strain as

h′(u′, θ, φ) = h(u′, θ, φ)− ð̄2α(θ, φ)

=

∞∑

k=0

1

k!

(
−α(θ, φ)

∂

∂u

)k
h(u, θ, φ)− ð̄2α(θ, φ).

(11)

where ð̄ is the conjugate of the Geroch-Held-Penrose
differential spin-weight operator [44]. Above

α(θ, φ) ≡
∑

`≥0,|m|≤`

α`mY`m(θ, φ) (12)

with

α`m = (−1)mᾱ`,−m (13)

is a real function which characterizes the supertranslation.
The ` = 0 component of α(θ, φ) is a time translation, the
` = 1 components are space translations, and the ` ≥ 2 are
proper supertranslations. From Eq. (11), one can easily
realize that under the action of a supertranslation the
strain experiences two types of changes. First, the strain
is changed by the angle-dependent constant ð̄2α(θ, φ).
Apart from this, however, because the retarded time

changes as u′ = u− α(θ, φ), we also expand about u to
express the transformed strain directly in terms of the
strain in the original frame. We see from Eq. (11) that
this involves multiplying the time derivatives of the strain
with powers of α(θ, φ). Consequently, the strain will
experience mode-mixing in addition to changing by an
angle-dependent constant. Furthermore, if one imagines
taking a time-derivative of Eq. (11) then it can be seen
that the news will also experience mode-mixing due to
the supertranslation’s effect on the retarded time.

Therefore, because of these extra symmetries, whenever
we examine a system that is radiating gravitational waves
it is insufficient to specify just a Poincaré frame, e.g.,
the remnant BH’s center-of-mass frame; we instead need
to specify the entire BMS frame, i.e., how the system’s
supertranslation freedom is being fixed.
In [24] this task of specifying a system’s BMS frame

was performed for the first time by mapping numerical
waveforms from BBH systems to the post-Newtonian (PN)
BMS frame, i.e., the frame that PN waveforms are in.
When fitting the ringdown phase of waveforms to Eq. (6),
mapping waveforms to the PN BMS frame is not the
appropriate BMS frame choice, because this frame corre-
sponds to the strain going to zero at early times (when
approaching i0), rather than at late times (when approach-
ing i+). Instead, we should be mapping our waveforms
to what is called the nice section [30] or the super rest
frame [24] at i+. This is because when Teukolsky found
the linear equations that describe the dynamical gravita-
tional perturbations of a rotating black hole [7], i.e., the
equations that give rise to QNMs, he implicitly worked
in the BMS frame adapted to the stationary background
metric [45], i.e., the super rest frame. However, black
holes in nature or the remnant black holes produced in
numerical simulations are supertranslated relative to this
preferred frame. As a result, we need to map these black
holes to the frame that Teukolsky worked in.
As outlined in [24], the way to map a system to the

super rest frame is to use the Moreschi supermomentum,
which is an extension of the usual Bondi four-momentum,

ΨM(u, θ, φ) = −
∑

`≥0,|m|≤`

ΨM
`m(u)Y`m(θ, φ), (14)

where

ΨM
`m(u) = − 1√

4π

∫

S2

Y`m
[
Ψ2 + σ ˙̄σ + ð2σ

]
dΩ, (15)

Ψ2 is one of the Weyl scalars, and σ is the shear.6 Ideally,
to map to the super rest frame we would want to minimize
the Moreschi supermomentum as u→ +∞. But, since our
simulations do not go all the way to i+, we can instead

6 Note that here and in Eq. (15) we are specifically working with
the Moreschi-Boyle convention [24, 27, 46, 47], i.e., in comparison
to the numerical formulation of the strain and the Weyl scalars
we simply have hNR = 2σ̄ and ΨNR

i = 1
2

(−
√

2)iΨi.
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minimize the Moreschi supermomentum during a late
portion of the ringdown phase. Specifically, we construct
the BMS frame of our waveforms via the following:

• fix the system’s rotation freedom by aligning the
remnant BH’s spin with the positive z-axis;

• take the boost velocity and space translation, i.e.,
the ` = 1 components of the supertranslation, to be
the transformations that minimize the remnant’s
center-of-mass charge over the late time window
u ∈ [upeak + 150M,upeak + 350M ] [24];

• take the 2 ≤ ` ≤ 4 modes of the supertranslation to
be the transformations that minimize the L2 norm
of the 2 ≤ ` ≤ 4 modes of ΨM over the late time
window u ∈ [upeak + 150M,upeak + 350M ] [24].

Above upeak is the time at which the L2 norm of the
strain achieves its maximum value. By performing this
frame-fixing procedure, we transform to a waveform with
its BMS frame fixed so that it can be modeled by Eq. (6).
Note that the window u ∈ [upeak + 150M,upeak + 350M ]
is chosen as such because it is roughly the 200M before
the earliest end time of our simulations. We find that
our results are fairly independent of this time window,
provided that it starts beyond u ≈ (upeak + 100M).

C. QNM fitting procedure

Given a numerical waveform hNR
`m (u) and the functional

form of hQ`m(u), we can consider the problem of fitting for
the QNM amplitudes A±`′mn. To do this, we first need an
inner product on the space of spin-weight s waveforms on
I +. For waveforms a and b, the natural inner product is
defined as

〈a, b〉 ≡
∫ uf

u0

du

∫

S2

dΩ a∗(u, θ, φ)b(u, θ, φ), (16)

Where [u0, uf ] is the interval of time where we would like
to fit the waveform by a QNM model. Both waveforms
can be decomposed into a`m and b`′m′ as in Eq. (1).
By applying the orthogonality relationship of Eq. (2) to
collapse the double sum to a single sum, the inner product
on I + then becomes

〈a, b〉 =

∫ uf

u0

du
∑

`,m

a∗`m(u)b`m(u) =
∑

`,m

〈alm, blm〉u,

(17)

where

〈f, g〉u ≡
∫ uf

u0

f∗(u)g(u)du (18)

is the usual L2 inner product for complex functions on
the real line. However, because our study only considers

modes with ` ≤ 4, the inner product that we use in the
rest of paper is in fact given by

〈a, b〉 =
∑

`≤4,m

〈alm, blm〉u, (19)

which we henceforth call the all-mode inner product, keep-
ing in mind that here ‘all’ means all the modes included
in the NR waveform.
From this inner product we construct the mismatch
M, a figure of merit commonly used in the literature, as
follows:

M(a, b) ≡ 1−O(a, b), (20)

where O(a, b) is the overlap,

O(a, b) ≡ Re

[
〈a, b〉√
〈a, a〉〈b, b〉

]
. (21)

Consequently, for a NR waveform hNR(u, θ, φ) ex-
pressed by its spin-weighted spherical harmonic coeffi-
cients hNR

`m , we can quantify the effectiveness of a fit hQ(~λ)

by calculating the all-mode mismatchesM(hNR, hQ(~λ)).
Here ~λ is the set of free parameters of the fit. When we
focus on a single mode (`,m), however, we instead use
the single mode mismatchM(hNR

`m , h
Q
`m(~λ)).

Nonetheless we do not find the optimal parameters ~λopt
by directly minimizing this figure of merit. Instead we
first calculate the residual

R ≡ hNR − hQ, (22)

and then compute the squared norm of the residual,
〈R,R〉, as the figure of merit that we want to minimize.
One can show that because the norm of hQ(~λ) can be
independently varied, minimizing the norm of the residual
also minimizes the mismatch. However the problem of
minimizing the former is manifestly linear in nature for
the QNM amplitudes, and is not degenerate in the norm.
Therefore we find the optimal parameters ~λopt by

~λopt = arg min
~λ

〈R,R〉 or ~λopt = arg min
~λ

〈Ṙ, Ṙ〉 , (23)

where we use the second choice if we want to work in
the domain of the news N = ḣ. Although one could also
consider working in the Ψ4 domain, our analyses focus
on the strain, since it is the physical quantity that the
gravitational-wave detectors measure and on the news,
since the power is naturally defined by it.

Now, ~λ can take on one of two forms: ~λ = {A±`′mn}, or
~λ = {{A±`′mn},M, a}, where A±`′mn are the QNM ampli-
tudes from Eq. (6), andM and a are the mass and spin of
the remnant black hole. In the former we use the remnant
black hole mass and spin obtained from the simulation
(see below), and solve for ~λ = {A±`′mn} using NumPy’s
linear least square method [48]. On the other hand when
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~λ = {{A±`′mn},M, a}, the remnant properties are deduced
by fitting the waveform. Here we perform a least-squares
minimization between the NR waveform and the QNM
model using SciPy’s Nelder-Mead algorithm [49, 50] to
find the remnant BH’s mass and spin and simultaneously
use the linear least square method to determine the am-
plitudes. We also note that since we rotate the remnant
BH’s spin direction to be aligned with the positive z-axis,
there is no mixing of the m modes. Therefore, we can fit
the QNM amplitudes for each value of m independently.

Finally, it should be noted that when we are only solving
for the amplitudes, i.e., ~λ = {A±`′mn}, we obtain the mass
and the spin of the remnant from I + rather than the
apparent horizon. That is, following the work of [24, 51],
we use Poincaré charges to obtain the remnant’s mass
and spin via Eqs. (11) and (15) of [51]. The mass and
spin are taken to be the values of the charges at the last
available time step.

D. Numerical waveforms

For the following results, we numerically evolved a set
of 14 binary black hole mergers with many mass ratios
and spin configurations using the Spectral Einstein Code
(SpEC) [54]. We list the important parameters of these
various BBH systems in Table I. Each simulation contains
roughly 19 orbits prior to merger and is evolved until the
waves from ringdown leave the computational domain.
Unlike the evolutions in the SXS catalog, the full set of
Weyl scalars and the strain have been extracted from
these runs and the waveforms have been computed using
the extrapolation technique described in [55] and the
Cauchy-characteristic extraction (CCE) procedure that
is outlined in [56, 57]. Extrapolation is performed with
the python module scri [27, 58–60] and CCE is run with
SpECTRE’s CCE module [56, 57, 61].
For the CCE extractions, the four world tubes that

are available have radii that are equally spaced between
2λ0 and 21λ0, where λ0 ≡ 1/ω0 is the initial reduced
gravitational wavelength as determined by the orbital
frequency of the binary from the initial data. Based on
the recent work of [62], however, we choose to use only
the waveforms that correspond to the world tube with
the second-smallest radius, since these waveforms have
been shown to minimally violate the BMS balance laws.
For clarity, we provide the world tube radius used for
each system in Table I. All of these 14 BBH systems’
waveforms have been made publicly available at [52, 53].

As mentioned above, the asymptotic strain waveforms
are computed using two methods: extrapolation and CCE.
The first method utilizes Regge-Wheeler-Zerilli (RWZ)
extraction to compute the strain on a series of concentric
spheres of constant coordinate radius and then proceeds to
extrapolate these values to future null infinity I + using
1/r approximations [3, 55, 63–66]. This is the strain that
can be found in the public SXS catalog. The other and
more faithful extraction method, which is known as CCE,

computes the strain by using the world tube data provided
by a Cauchy evolution as the inner boundary data for
a nonlinear evolution of the Einstein field equations on
null hypersurfaces extending all the way to I + [56, 57].
CCE requires freely specifying the strain on the initial
null hypersurface labeled u = 0. Like [24, 42, 62], we
choose this field to match the value and the first radial
derivative of h from the Cauchy data on the world tube
using the ansatz

h(u = 0, r, θA) =
A(θA)

r
+
B(θA)

r3
, (24)

where the two coefficients A(θA) and B(θA) are fixed by
the Cauchy data on the world tube.
As for the extrapolated strain waveforms that we use,

these have been postprocessed so that they exhibit the
displacement memory effect and are thus more on par
with the waveforms produced by CCE [62].

Lastly, when performing our analyses, we predomi-
nantly use the code scri [27, 58–60] to compute Poincaré
charges and transform our asymptotic waveform quanti-
ties to the super rest frame using the procedures outlined
in Sec. II and Appendix A of [24]. Our waveforms only in-
clude the ` ≤ 4 modes since these are the modes included
in the BMS frame fixing procedure. We also only model
our waveforms up to uf = upeak + 90M as in [9].

III. ON WHICH MODES TO INCLUDE

The importance of using multiple waveform modes to
capture the physics of a remnant black hole—considering
both multiple angular (`,m) modes as well multiple
overtones—has been studied extensively [9–11, 17, 67].
When constructing a QNM model it is crucial that we are
able to choose as many modes as necessary to accurately
model our system, without overfitting or introducing de-
generacy. Because manually choosing an arbitrary number
of modes without knowing which modes are important
to include is objectionable, we have written a greedy al-
gorithm that provides us with an efficiently low number
of modes needed to model the ringdown waveform to a
requested precision. Consequently, we can reduce the
number of modes that are needed to capture the most
physics and also identify the most physically-relevant
modes.

A. Greedy algorithm

The greedy algorithm that we implement is iterative,
adding the prograde and retrograde modes at each iter-
ation. The data at iteration i is a collection of i mode
labels (`′,m, n,±) and the parameter vector of length i,

~λ(i) = {A±`′mn} , (25)

corresponding to those modes.
The greedy algorithm can be summarized as follows.
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Name CCE radius q χA: (x̂, ŷ, ẑ) χB : (x̂, ŷ, ẑ)

q1_nospin 292 1.0 (0, 0, 0) (0, 0, 0)

q1_aligned_chi0_2 261 1.0 (0, 0, 0.2) (0, 0, 0.2)

q1_aligned_chi0_4 250 1.0 (0, 0, 0.4) (0, 0, 0.4)

q1_aligned_chi0_6 236 1.0 (0, 0, 0.6) (0, 0, 0.6)

q1_antialigned_chi0_2 274 1.0 (0, 0, 0.2) (0, 0, −0.2)

q1_antialigned_chi0_4 273 1.0 (0, 0, 0.4) (0, 0, −0.4)

q1_antialigned_chi0_6 270 1.0 (0, 0, 0.6) (0, 0, −0.6)

q1_precessing 305 1.0 (0.487, 0.125,−0.327) (−0.190, 0.051,−0.227)

q1_superkick 270 1.0 (0.6, 0, 0) (−0.6, 0, 0)

q4_nospin 235 4.0 (0, 0, 0) (0, 0, 0)

q4_aligned_chi0_4 222 4.0 (0, 0, 0.4) (0, 0, 0.4)

q4_antialigned_chi0_4 223 4.0 (0, 0, 0.4) (0, 0, −0.4)

q4_precessing 237 4.0 (0.487, 0.125,−0.327) (−0.190, 0.051,−0.227)

SXS:BBH:0305 (GW150914) 267 1.221 (0, 0, 0.330) (0, 0, −0.440)

TABLE I. Parameters of the BBH mergers used in our results. The mass ratio is q =MA/MB , and the initial dimensionless
spins of the two black holes are χA and χB . These simulations have been made publicly available at [52, 53].
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n = 7

FIG. 2. Fraction of unmodeled power that is obtained when
comparing a QNM model built from the (2,±2, 0−n) mode(s)
to a CCE strain waveform as a function of the QNM model
start time u0. We compute the fraction of unmodeled power
in the waveform using the news waveforms, i.e., by using
Eq. (30). This includes the power that is unmodeled because
of neglecting higher modes in the QNM model.
BBH merger: SXS:BBH:0305.

(I) Begin with an empty list of modes and amplitudes.

(II) At each iteration i, form the residual

R(i) ≡ hNR − hQ,i , (26)

between the NR waveform and hQ,i, which is built
from the i amplitudes {A±`′mn}. If instead working
in the news domain, we form the residual as the
difference of the news waveforms

Ṙ(i) ≡ ḣNR − ḣQ,i . (27)

−10 0 10 20 30 40 50

(u0 − upeak) /M

10−7

10−5

10−3

10−1
F

(ḣ
)

Nmodes = 5

Nmodes = 20

Nmodes = 50

Nmodes = 100

u0 − upeak = 20M

FIG. 3. Fraction of unmodeled power (solid) that is obtained
when comparing QNM models built by our greedy algorithm
with various number of modes to a CCE strain waveform.
Again, the power, which is plotted and used in our algorithm
to pick modes to model, is computed using the news waveforms,
i.e., by using Eq. (30). The dashed curves are QNM fits using
the fixed set of modes determined by the greedy algorithm at
the time u0 − upeak = 20M . On the other hand, for the solid
curves the set of modes is determined for each u0 independently,
which causes the the solid curves to not be smooth.
BBH merger: SXS:BBH:0305.

(III) Compute the power in each mode of the residual,

P
(i)
`,m(R) ≡ 〈R(i)

`,m, R
(i)
`,m〉u , (28)

using the usual L2 metric in Eq. (18). Analogously,
when working in the news domain we use P (i)

`,m(Ṙ)

as the power instead. Notice that,
∑
`,m P

(i)
`,m(Ṙ)

is proportional to the physical gravitational-wave
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luminosity of the residual waveform.

(IV) Rank the (`,m) modes in the residuals by their
powers P (i)

`,m, and identify the mode (¯̀, m̄) with the
largest residual power.

(1) If no QNMs with the (` = ¯̀,m = m̄) mode are
present in the parameter list, add the prograde
and retrograde modes (¯̀, m̄, 0,±1).

(2) If some QNMs with (` = ¯̀,m = m̄) are already
in the parameter list, identify the smallest n̄
not present in the parameter list. If n̄ ≤ nmax

for some max overtone number nmax, add this
next mode with the prograde and retrograde
modes (¯̀, m̄, n̄,±1). For this paper we chose a
max overtone number of nmax = 7.

(3) If all-modes (¯̀, m̄) with 0 ≤ n ≤ nmax are
already in the parameter list, set (¯̀, m̄) as the
mode of the residual that is the next loudest
in the list of P (i)

`,m. Return to step (1) to find
which mode to include.

Although here at each step we are adding 2 QNMs
(¯̀, m̄, n̄,±1), we group these modes together and
count them as adding one mode.

(V) After identifying the next mode(s) to include, re-
solve the linear least squares problem to determine
the optimal values of {A±`′mn}.

(VI) Compute the fraction of residual power to target
waveform power in the strain domain

F(h) ≡ 〈R
(i), R(i)〉

〈hNR, hNR〉 (29)

or the news domain

F(ḣ) ≡ 〈Ṙ
(i), Ṙ(i)〉

〈ḣNR, ḣNR〉
, (30)

where R and Ṙ are defined in Eq. (26) and Eq. (27).
Both of these choices are well motivated, but we
primarily use Eq. (30), since this corresponds to
the physical gravitational-wave luminosity of the
residual waveform.

(VII) Terminate if either F < Ftarget for some target
residual power fraction, or if the number of modes
i = Nmax: a maximum number of modes to include.

(VIII) Return to step (II) and repeat.

A study using multimode fitting to investi-
gate the performance of three different fitting
methods across three different sets of modes –
{(2, 2)}, {(2, 2), (3, 2)}, {(2, 2), (3, 2), (4, 2)} – was
first was carried out in [10]. Results show that when
fitting for more than just the dominant (2, 2) mode, all
fitting methods converge. However, these methods are
tested using only a limited set of modes, whereas our
greedy algorithm can use all modes (see [10] for more
details).

−10 0 10 20 30 40 50

(u0 − upeak) /M

10−7

10−5

10−3

10−1

M
( h

N
R
,h

Q
)

Nmodes = 5

Nmodes = 20

Nmodes = 50

Nmodes = 100

(2,±2, 0)

(2,±2, 0− 7)

u0 − upeak = 20M

FIG. 4. All mode mismatches between the CCE waveform
and a QNM model fitting N number of modes. The solid
curves correspond to QNM models with a varying number
of modes that are modeled. The dashed curves are QNM
amplitude fits using the modes from u0 − upeak = 20M . The
dash-dotted curves represent the all mode mismatch from just
the (2,±2) modes with the n = 0 tone and the n = 0−7 tones.
Finally, the top of the black region illustrates the mismatch
between the highest and the next-highest resolution waveforms
to provide a reference for the numerical error that is present
in our strain waveform.
BBH merger: SXS:BBH:0305.

B. Importance of multiple modes in modeling

In the remaining parts of this section, we use the simu-
lation SXS:BBH:0305, which corresponds to GW150914,
(see Table I) to study the importance of multimode fit-
ting. We begin by applying our QNM modeling procedure
to the (2,±2) modes with up to 7 overtones. In Fig. 2
we show the fraction of unmodeled power as a function
of u0 − upeak using n number of overtones in the QNM
model. For computing the unmodeled power, we use the
CCE waveform, in the super rest frame, and measure the
fraction of unmodeled power in the news domain with
Eq. (30). From this plot, one can easily observe the impor-
tance of including overtones in the model. By using just
the n = 0 mode, one can only model about 65% of the
power starting at u0 = upeak. With all 7 of the overtones
included, the modeled power improves to roughly 97% of
the total power.
Accounting for overtones, however, is only one of the

important components for correctly modeling a waveform
with QNMs. Although the (2,±2) modes are the most
important to use due to their dominance, including higher-
order modes is crucial to more accurately describe the
ringdown phase, especially for systems that may not ex-
hibit symmetries, e.g., having mass ratio one. Overall,
higher-order modes contain less power and overtones have
shorter damping times relative to the (2,±2) modes and
n = 0 modes. Therefore, their importance within the
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QNM model lessens as we reach later stages of ringdown.
Nevertheless, they exhibit a considerable amount of power
at early ringdown times and are essential in capturing the
remaining power stored in a gravitational wave. To high-
light this, in Fig. 3 we compute the fraction of unmodeled
power for models that include N ∈ {5, 20, 50, 100} modes
as a function of the QNM model’s start time u0. We
remind the reader that N counts the number of pairs of
prograde and retrograde modes included in the greedy
algorithm. In this plot, the solid curves correspond to
running the greedy algorithm independently for each u0,
while the dashed curves just use the fixed set of modes that
are obtained by the greedy algorithm at u0−upeak = 20M .
The jaggedness of the solid curves illustrates the fact that
the greedy algorithm’s choice of modes for the QNM
model is not a smooth function of the model start time
u0.

Using the solid curves, we find that, at time of merger,
the power captured in the model is nearly 96% with 5
modes, which is a rather comparable result to using the
(2,±2, 0 − 7) modes. With 20 modes over 99% of the
power is captured. With 100 modes, we are modeling
99.999% of the power. Again, for this plot we are using
the CCE waveform for SXS:BBH:0305 and are performing
computations of the power in the news domain, i.e., by
using Eq. (30). The order in which all 168 modes of this
waveform are included is shown in Table. II.

Apart from the fraction of unmodeled power, we also
calculate the mismatches between the CCE waveform and
the model using varying number of modes, as shown by
the solid curves in Fig. 4. As a reference, we also provide
two dash-dotted curves showing the all mode mismatch
from just the (2,±2) modes with the n = 0 tone and n = 0
tone and the 7 overtones as well as the mismatch between
the highest and the next-highest resolution waveforms
via the top of the black region to illustrate that every
mismatch curve is above our numerical error.
Our most important finding regarding multimode fit-

ting, however, is that by using multimode fitting rather
than just the (2, 2) mode with its n = 0 tone and the
first 7 overtone modes we can significantly improve our
ability to extract the remnant’s mass and spin using a
QNM model. To confirm that our QNM model is able to
faithfully represent the full numerical simulation, rather
than just the waveform, we perform a minimization of the
mismatch between the QNM model and the NR waveform,
with the remnant’s mass and spin as free parameters. As
a measure of the error in the mass and spin found by our
NR/QNM mismatch minimization procedure, we use

ε =
√

(δM/M)2 + (δχ)2, (31)

where the terms δM and δχ are the differences between
the minimization results and the remnant values obtained
by computing the Poincaré charges that correspond to
the strain and Weyl scalars produced by the simulation
(see Sec. II C and Eqs. (11) and (15) of [51]). Our results
from this procedure are shown in Fig. 5.

For this analysis, we used 86 SXS simulations that were
incorporated into the NRHyb3dq8 surrogate [68]. In this
figure, there are four histograms that show the epsilon
values obtained from either using the (2, 2, 0) mode, the
(2, 2, 0− 3) modes, the (2, 2, 0− 7) modes, or from using
the first 40 modes that are chosen by our multimode
algorithm, which is summarized in Sec. III A. For each of
these histograms, we also plot the median of the epsilons
on the ε-axis. However, as can be seen by using just
40 modes, we can improve the median epsilon estimate
across these simulations by a bit more than a factor of
two: specifically, the median epsilon that is obtained from
the (2, 2) mode with up to 7 overtones is 4.23 × 10−3

while the median epsilon obtained from using 40 modes is
7.10×10−4. Furthermore, we find that the median epsilon
only improves as one includes more than 40 modes, but
eventually reaches a minimum value of 2.68× 10−4 when
using every mode available in the waveform. We attribute
this inability to push the epsilon precision any lower to
the fact that the higher-order modes of the waveform are
more influenced by numerical error and also have more
nonlinear contributions, which are not captured by the
linear QNM model (see, e.g., Fig. 2 of [42]). Finally, we
should also note that when using modes other than just
the (2, 2) mode, the QNM model needs to start at a time
later than u0 − upeak = 0 because the nonlinearities in
these other modes, such as the (2, 0) mode, cannot be
represented by the QNM model. Consequently, for the
histogram created with 40 modes that we show in Fig. 5,
we instead start our fits at u0 − upeak = 20M .

IV. CONSEQUENCES OF WORKING IN THE
SUPER REST FRAME

At this point, we now wish to illustrate the importance
of using waveforms that are in the super rest frame and
clarify some points of disagreement that have been present
in recent works regarding QNMs. As a reminder, in this
work by super rest frame we mean the frame in which
the rotation is fixed by aligning the remnant BH’s spin
with the positive z-axis, the boost velocity and space
translation are fixed by minimizing the center-of-mass
charge, and the 2 ≤ ` ≤ 4 supertranslations are fixed
by minimizing the L2 norm of the 2 ≤ ` ≤ 4 modes of
the Moreschi supermomentum (see Sec. II B). First, we
simply show the most prominent effect that working in
the incorrect BMS frame has on QNMs. In Fig. 6, we
show two plots. Both are comparisons between the real
component of the strain (2, 0) mode of the CCE waveform
that corresponds to the GW150914 event and a QNM
model for the same mode with 7 overtones. However, the
plots on the left use the waveform in the center-of-mass
frame whereas the plots on the right use the waveform
once it has been mapped to the super rest frame. As can
be seen, the primary difference between these two curves
is that the curve on the left approaches some nonzero
value as u → ∞ while the curve on the right instead
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` 2 3 4

m
n 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

-4 12 14 18 31 38 50 69 90
-3 10 16 33 43 83 112 153 168 44 48 56 71 99 116 130 152
-2 2 4 6 25 55 104 135 156 26 28 34 47 80 114 148 164 75 77 84 97 107 118 143 160
-1 19 22 39 62 101 127 145 161 63 66 73 94 109 121 132 139 123 125 133 137 141 149 158 166
0 7 8 21 36 41 59 79 95 52 53 58 60 65 78 91 103 86 87 88 92 100 106 111 120
1 20 23 40 61 102 128 146 162 64 67 72 93 110 122 131 140 124 126 134 138 142 150 157 165
2 1 3 5 24 54 105 136 155 27 29 35 46 81 115 147 163 74 76 85 96 108 119 144 159
3 9 15 32 42 82 113 154 167 45 49 57 70 98 117 129 151
4 11 13 17 30 37 51 68 89 0

168

TABLE II. Order in which 168 (`,m, n) modes are added to the QNM model by the greedy algorithm for SXS:BBH:0305 with
the QNM model’s start time u0 taken to be the peak of the L2 norm of the strain.
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FIG. 5. Various distributions of the epsilons (see Eq. (31)) that have been obtained by minimizing the mismatch between the
strain waveforms from 86 SXS simulations used in the NRHyb3dq8 surrogate and a QNM model that has either been built with
the (2, 2, 0) mode (blue), the (2, 2, 0− 3) modes (orange), the (2, 2, 0− 7) modes, (green), or the 40 modes that are chosen by
the multimode algorithm (red) (see Sec. III A). On the ε-axis, we also provide the median values of epsilon for each distribution.
The starting time is taken to be u0 − upeak = 20M .

approaches zero. Consequently, the QNM model in the
left plot completely fails, while the QNM model in the
right plot is what we would expect to see based on QNM
fits to the (2, 2) mode. Again, the reason for this stark
contrast in results is due to the supertranslation freedom
that is present in our asymptotic waveforms. If one does
not map their system to the super rest frame, i.e., if one
does not make their system resemble a Kerr black hole in
its canonical BMS frame – rather than a supertranslated
Kerr black hole – then the QNM model fails to represent
the waveform.
Apart from this, in the bottom right plot of Fig. 6 we

also provide the red curve to highlight the importance of
performing supertranslations, i.e., transforming the coor-
dinates as well as the waveform objects, rather than just
changing the strain by a constant. This curve also shows
the residual between a NR waveform and its correspond-
ing best-fit QNM model, but the NR waveform has been
changed by a constant so that its final value is zero, as
was performed in Giesler et al. [9]. As can be seen, while
the error in this QNM fit is comparable to that of the
NR waveform whose BMS frame has been properly fixed,
it is still off by nearly an order of magnitude. Therefore,
even though changing the strain by a constant is simpler
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FIG. 6. Comparison between the real component of the (2, 0) mode of a CCE waveform and the QNM model built from the
(2, 0) mode with n = 0 and 7 overtones. The upper panels show both waveforms, while the lower panels show the residual
between the two. In the plots on the left, we are using a NR waveform in the center-of-mass frame of the remnant BH, while in
the plots on the right we have mapped the NR waveform to the super rest frame using the method outlined in Sec. II and
Appendix A of [24]. In the bottom right plot, we also show a residual curve in red, whose NR waveform has been mapped to the
center-of-mass frame of the remnant BH and changed by a constant so that it obtains a final value of zero. We include this
curve to illustrate that by performing a supertranslation, rather than changing the strain by a constant, one can obtain much
more accurate QNM fits due to the mode-mixing that is induced by supertranslations [27].
BBH merger: SXS:BBH:0305.
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FIG. 7. The same as Fig. 6, but for the (3,2) mode. Note that when building this QNM model we have included not only the
(3, 2, 0− 7) modes, but also the (2, 2, 0− 7) modes because these modes are needed to accurately represent the (3, 2) mode due
to the spherical-spheroidal mixing that occurs when changing the basis of the QNM model.

than performing a BMS transformation, applying a su-
pertranslation produces a much better QNM fit because
it also fixes unwanted mode-mixing that occurs due to
the supertranslation also changing the retarded time [27].

While this effect is most prominent in the strain (2, 0)
mode, it is also present in other modes, such as the (3, 2)

as shown by Fig. 7, and even the more-commonly used
strain (2, 2) mode. In Fig. 8, we show the mismatch in
the (2, 2) mode between a numerical waveform and a
QNM model, with varying numbers of overtones, as a
function of the QNM model’s start time u0. Ultimately,
this plot is a recreation of Fig. (2) in [9] or Fig. (2) in [10],
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why Fig. (2) of [9] and Fig. (2) of [10] are different. In [9],
they performed an ad hoc subtraction of their waveform, while
in [10] no such change to the extrapolated waveform was
performed. Note that for this plot we only include the prograde
modes in our QNM model to remain consistent with the results
of [9] and [10].
BBH merger: SXS:BBH:0305.

but with the intent of clarifying why the figures from
those two papers are in clear contrast with one another,
despite using the same SXS waveform. In [9], their plot
more closely resembles our solid curves, which have been
created using a CCE waveform that has been mapped
to the super rest frame. In [10], their plot is identical
to our dashed curves, which have been created using
the publicly available extrapolated waveform that can be
found in the SXS Catalog [3, 53]. This is the waveform
used in [9, 10], without one important change. What is
different about the data used in [9] is that they performed
an ad hoc subtraction of their waveform to send it to 0
as u → ∞. In [10] and in the dashed curves of Fig. 8,
this subtraction was not performed, hence the worsening
of the mismatch that can be seen as u0 increases. The
reason why our solid curves more closely resemble the
curves seen in [9] is because we have mapped our waveform
to the super rest frame using supertranslations, rather
than changing the waveform by a constant. While the
two actions have similar effects, supertranslations also
affect the coordinates, which is not true of changing the
waveform by a constant. This is illustrated by the red
curve in the bottom right plot of Figs. 6 and 7. Therefore,
Fig. 8 clearly illustrates the importance of mapping to
the super rest frame, even for modes such as the (2, 2)
mode where such effects were thought to be negligible.
Based on the results that are shown in Figs. 6 and 8,

one’s immediate response to this issue of BMS frames
might be to simply fit the QNM model to the news instead

of the strain, seeing as the displacement memory effect is
not present in the news. To counter this proposal, however,
we provide Fig. 9, which shows the mismatch between
CCE waveforms and QNM models built from 100 modes
for a wide range of systems whose parameters can be found
in Table I. In the top panel, we are performing our QNM
fits in the strain domain, while in the bottom panel we are
performing our QNM fits in the news domain. For each
panel, we also show three types of mismatch comparison:
when the numerical waveforms (i) are not mapped to a
certain BMS frame; (ii) have been mapped to just the
center-of-mass (CoM) frame, or (iii) have been mapped
to the the super rest frame using the procedures outlined
in [24]. As can be seen in the top panel, mapping to the
super rest frame, on average, improves the mismatches by
6 orders of magnitude. This, however, should not come
as a surprise seeing as this result is predominantly due
to supertranslating away the offset in the strain induced
by the gravitational memory effect, e.g., what is shown
in Fig. 6. What should come as a surprise, however, is
what is shown in the bottom panel: namely that mapping
to the super rest frame, on average, also improves the
mismatches in the news domain by a factor of 2. Due to
this, we now realize that mapping to the super rest frame
is even important in the news or Ψ4 domains where there
is no memory effect. We attribute this phenomenon to the
mode mixing that occurs due to the change in coordinates
of the system by the supertranslations.

Last, to help illustrate what brings about these changes
in the mismatch as a function of frame, we present Fig. 10.
In Fig. 10 we show how the fraction of unmodeled power
varies as a function of mode for strain and news waveforms
in the center-of-mass or super rest frame for the simulation
SXS:BBH:0305. More specifically, for each waveform we
build a QNM model using every available mode and then
we compute the fraction of unmodeled power between the
numerical waveform and the QNM model using Eq. (29)
(top plot) or Eq. (30) (bottom plot) with the residual, i.e.,
Eq. (26) or Eq. (27), only involving the corresponding
mode of the waveform and the QNM model. We organize
the modes in terms of the largest relative difference in the
fraction of unmodeled power in the strain domain between
the center-of-mass and the super rest frame waveforms.
As can be seen, in the strain domain the modes that are
most strongly impacted by the super rest frame are the
(2,±2) modes, the (3,±2) modes, and the m = 0 modes.
This occurs for many reasons. For the m = 0 modes,
this is most naturally understood by realizing that these
modes often exhibit more memory effects than others and
thus require the supertranslations to reduce the offset
normally found in the ringdown phase of these modes.
Put differently, these modes are strongly influenced by
the ð̄2α(θ, φ) factor in Eq. (11). For the (3,±2) modes,
the reason why these modes are impacted is because of
the mode-mixing that occurs due to Taylor expanding
the strain in the supertranslated coordinate system about
the original coordinate system. For the supertranslations
that we apply to map to the super rest frame, the most
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FIG. 9. Examining the mismatch between a NR waveform and a QNM model that is built from 100 modes as a function of the
BMS frame that the numerical waveform is mapped to. The QNM model start time u0 is taken to be the time at which the L2

norm of the news takes on its maximum value. We show three bars that correspond to three different BMS frames: the arbitrary
BMS frame that the output of CCE is in, the remnant BH’s center-of-mass frame, and the super rest frame. In the top plot, we
show the mismatch between the strain waveforms, while in the bottom plot we show the mismatch between the news waveforms.
The parameters of the 14 binary black holes mergers that appear on the horizontal axis can be found in Table I.

dominant mode is the (2, 0) mode. Consequently, since the
dominant modes of the news are the (2,±2) modes, the
mode of the new strain that will be most influenced by the
supertranslation’s mode mixing is the mode corresponding

to the product of the Y(2,0) and −2Y(2,±2) functions, which
happens to be the (3,±2) mode. This can be seen directly
by making use of the spin-weighted spherical harmonic
triple integral identity:

∫

S2
s1Y`1m1 s2Y`2m2 s3Y`3m3

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `3
−s1 −s2 −s3

)
(32)

for s1 + s2 + s3 = 0, and then computing the corre-
sponding Wigner 3− j symbols to see which modes are
excited [69]. Last, for the (2,±2) modes, this is because
these two modes of the strain experience an unexpected
initial offset due to transient effects arising in the CCE
evolution [42, 56, 57]. Meanwhile, in the news domain, by
closer inspection one finds that the modes most strongly
influenced by mapping to the super rest frame are the
(3,±2), (4,±2), and (2,±1) modes. Like the case of the

(3,±2) modes in the strain domain, this is because these
modes also experience considerable changes due to super-
translation mode-mixing effects, as can be verified with
Eq. (32).
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BBH merger: SXS:BBH:0305.

V. CONCLUSION

Across this study, we have developed a QNM model
which simultaneously fits multiple modes over all angles
and times using NR waveforms that have been mapped
to the super rest frame. First, we showed that for
SXS:BBH:0305 the amount of power captured in the QNM
model when fitting to only the dominant strain (2,±2)
modes is below 65% of the whole numerical waveform’s
power over all modes. Moreover, we also found that in-
cluding the (2,±2) overtone modes does not dramatically
increase the power modeled, except at times very close to
merger, in which case a 50% improvement over the fun-
damental mode can be seen by including 7 overtones. To
increase the amount of modeled power, one must instead
rely on higher-order modes.
Choosing which higher-order modes to include in the

QNM model is a nontrivial task. Therefore, we developed
a greedy algorithm that picks which modes to include
based on the fraction of unmodeled power in them. We
find that by including just 5 modes, we can model 96% of a
waveform’s power and by including just 20 modes, we can
push that number up to 99%. We also find an all-angles
mismatch improvement by a factor of 105 when using mul-

timode fitting as compared to using the (2,±2, n) modes.
Furthermore, we also showed the practical importance
of this higher-order mode power modeling improvement:
obtaining more accurate estimates of the remnant’s mass
and spin. With 40 modes we found that we can, on aver-
age, obtain mass and spin estimates that yield an epsilon
value (see Eq. (31)) that is almost a factor of 10 better
than what can be obtained by using the (2, 2) mode with
7 overtones. While we found that we can further improve
estimates by including even more modes, the minimum
median epsilon that we computed was only 62% less than
that obtained by using 40 modes. We attribute this to
the fact that by including higher-order modes, there are
more nonlinearities that the QNM model has to try and
fit (see, e.g., Fig. 2 of [42]).7

Lastly, we also illustrated the undeniable importance of
using waveforms that have been mapped to the same BMS
frame as that of the QNM model. As shown in Fig. 6,
Fig. 7, and Fig. 8, if one does not map their waveforms

7 In Fig. 2 of [42] the blue and green curves in the middle plot
represent nonlinearities, which would not be captured by the
QNM model.
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to the super rest frame then the gravitational memory
effect makes it problematic to model the ringdown part
of a waveform with QNMs. This is because when the
Teukolsky equation is separated, the coordinate system
used corresponds to the super rest frame at I +. Thus
the QNM ansatz in Eq. (4) is only valid in this frame.
On the other hand, numerical simulations have a history
of radiated gravitational waves that cause their frame
to typically deviate significantly from this frame. Con-
sequently, the waveforms emitted by these ringing black
holes need to be mapped to the super rest frame, if they
are to be correctly modeled by QNMs. Furthermore, this
importance of BMS frames extends beyond accounting for
the memory effect in the strain. In Fig. 9, we showed that
while mapping to the super rest frame is most important
for modeling the strain, it also plays a nontrivial role in
modeling the news because supertranslations also change
the Bondi coordinates and can thus reduce supertransla-
tion induced mode-mixing in the news.
As is illustrated by the fact that future ground-based

detectors like the Einstein Telescope and Cosmic Explorer
are expected to observe 102 − 104 events per year with
strong ringdown signals, including higher-order modes and
BMS frame fixing will undoubtedly be important for cor-
rectly modeling such ringdown signals with QNMs. These
modeling enhancements should therefore also help with
measuring properties of the remnant black holes as well as
testing Einstein’s theory of relativity [18, 19, 70]. While
BMS frame fixing may not prove to be directly useful for
LIGO/Virgo observations,8 if the ringdown phase of NR
waveforms is to be used to study remnant BHs and model
their amplitudes then fixing the BMS frame will certainly
be important, as illustrated in this work. Furthermore,
while we have presented a template for improving QNM
models by comparing QNMs against numerical relativity
waveforms, it would be very interesting to see our work
applied to the observations already collected by LIGO
and Virgo.
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