1,546 research outputs found

    Superthermal electron energy interchange in the ionosphere‐plasmasphere system

    Full text link
    A self‐consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self‐consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L ‐shell, as the field line gets longer and the equatorial pitch angle extent of the fly‐through zone gets smaller. The inference drawn from these results is that such a self‐consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere‐magnetosphere modeling networks. Key Points A self‐consistent approach alters the SE energy exchange in the I‐P system Plasmaspheric transparency varies with the thermal plasma and illumination SE transport and energy dep should be included in M‐I modeling networksPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97456/1/jgra50127.pd

    Faraday Isolators for High Average Power Lasers

    Get PDF

    Fermat's Equation in Matrices

    Get PDF
    The Fermat equation is solved in integral two by two matrices of determinant one as well as in finite order integral three by three matrices

    Magnetospheric convection electric field dynamics and stormtime particle energization: Case study of the magnetic storm of 4 May 1998

    Get PDF
    It is shown that narrow channels of high electric field are an effective mechanism for injecting plasma into the inner magnetosphere. Analytical expressions for the electric field cannot produce these channels of intense plasma flow, and thus, result in less entry and adiabatic energization of the plasma sheet into near-Earth space. For the ions, omission of these channels leads to an underprediction of the strength of the stormtime ring current and therefore, an underestimation of the geoeffectiveness of the storm event. For the electrons, omission of these channels leads to the inability to create a seed population of 10-100 keV electrons deep in the inner magnetosphere. These electrons can eventually be accelerated into MeV radiation belt particles. To examine this, the 1-7 May 1998 magnetic storm is studied with a plasma transport model by using three different convection electric field models: Volland-Stern, Weimer, and AMIE. It is found that the AMIE model can produce particle fluxes that are several orders of magnitude higher in the <i>L</i> = 2 – 4 range of the inner magnetosphere, even for a similar total cross-tail potential difference. <br><br><b>Key words.</b> Space plasma physics (charged particle motion and acceleration) – Magnetospheric physics (electric fields, storms and substorms

    New grating compressor designs for XCELS and SEL-100 PW projects

    Full text link
    The problem of optimizing the parameters of a laser pulse compressor consisting of four identical diffraction gratings is solved analytically. The goal of optimization is to obtain maximum pulse power, completely excluding both beam clipping on gratings and the appearance of spurious diffraction orders. The analysis is carried out in a general form for an out-of-plane compressor. Two particular plane cases attractive from a practical point of view are analyzed in more detail: a standard Treacy compressor (TC) and a compressor with an angle of incidence equal to the Littrow angle (LC). It is shown that in both cases the LC is superior to the TC. Specifically, for 160-cm diffraction gratings, optimal LC design enables 109 PW for XCELS and 115 PW for SEL-100 PW, while optimal TC design enables 86 PW for both projects.Comment: 10 pages, 4 figure

    Reducing laser beam fluence and intensity fluctuations in symmetric and asymmetric compressors

    Full text link
    All space-time coupling effects arising in an asymmetric optical compressor [1] consisting of two non-identical pairs of diffraction gratings are described analytically. In each pair, the gratings are identical and parallel to each other, whereas the distance between the gratings, the groove density, and the angle of incidence are different in different pairs. It is shown that the compressor asymmetry does not affect the far field fluence and on-axis focal intensity. The main distinctive feature of the asymmetric compressor is spatial noise lagging behind or overtaking the main pulse in proportion to the transverse wave vector. This results in a degraded contrast but reduces beam fluence fluctuations at the compressor output. Exact expressions are obtained for the spectrum of fluence fluctuations and fluence rms that depends only on one parameter characterizing compressor asymmetry. The efficiency of small-scale self-focusing suppression at subsequent pulse post-compression is estimated

    Consequences of the Ion Cyclotron Instability in the Inner Magnetospheric Plasma

    Get PDF
    The inner magnetospheric plasma is a very unique composition of different plasma particles and waves. Among these plasma particles and waves are Ring Current (RC) particles and Electromagnetic Ion Cyclotron (EMIC) waves. The RC is the source of free energy for the EMIC wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E x B convection from the plasma sheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC waves-coupling process, and ultimately becomes part of the particle and energy interplay, generated by the ion cyclotron instability of the inner magnetosphere. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric plasma physics research is the continued progression toward a coupled, interconnected system, with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves

    Large-Scale Analysis of Protein-Ligand Binding Sites using the Binding MOAD Database.

    Full text link
    Current structure-based drug design (SBDD) methods require understanding of general tends of protein-ligand interactions. Informative descriptors of ligand-binding sites provide powerful heuristics to improve SBDD methods designed to infer function from protein structure. These descriptors must have a solid statistical foundation for assessing general trends in large sets of protein-ligand complexes. This dissertation focuses on mining the Binding MOAD database of highly curated protein-ligand complexes to determine frequently observed patterns of binding-site composition. An extension to Binding MOAD’s framework is developed to store structural details of binding sites and facilitate large-scale analysis. This thesis uses the framework to address three topics. It first describes a strategy for determining over-representation of amino acids within ligand-binding sites, comparing the trends of residue propensity for binding sites of biologically relevant ligands to those of spurious molecules with no known function. To determine the significance of these trends and to provide guidelines for residue-propensity studies, the effect of the data set size on the variation in propensity values is evaluated. Next, binding-site residue propensities are applied to improve the performance of a geometry-based, binding-site prediction algorithm. Propensity-based scores are found to perform comparably to the native score in successfully ranking correct predictions. For large proteins, propensity-based and consensus scores improve the scoring success. Finally, current protein-ligand scoring functions are evaluated using a new criterion: the ability to discern biologically relevant ligands from “opportunistic binders,” molecules present in crystal structures due to their high concentrations in the crystallization medium. Four different scoring functions are evaluated against a diverse benchmark set. All are found to perform well for ranking biologically relevant sites over spurious ones, and all performed best when penalties for torsional strain of ligands were included. The final chapter describes a structural alignment method, termed HwRMSD, which can align proteins of very low sequence homology based on their structural similarity using a weighted structure superposition. The overall aims of the dissertation are to collect high-quality binding-site composition data within the largest available set of protein-ligand complexes and to evaluate the appropriate applications of this data to emerging methods for computational proteomics.Ph.D.BioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91400/1/nickolay_1.pd

    Modeling of Inner Magnetosphere Coupling Processes

    Get PDF
    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics
    corecore