10 research outputs found

    How Neanderthals gripped retouchers: experimental reconstruction of the manipulation of bone retouchers by Neanderthal stone knappers

    Full text link
    When studying bone retouchers, researchers pay close attention to the morphological characteristics of the tool’s active zone, and the lithic raw material processed. In our research, we found that the orientation of the bone retoucher in the hand and the grip employed to retain and manipulate it are crucial factors that affect the morphological characteristics of the retoucher’s active zone. By examining two alternative grips for manipulating bone retouchers ((1) Using all the fingers of one hand in a power grip; (2) Using only the first three digits of one hand in a pinch grip), we found that when the retoucher is held in the first manner, the active area is larger, as is the amount of bone removed by the retoucher. When the retoucher was pinched with only three fingers in a precision grip, retouch damage was more densely concentrated and less bone was removed. The orientation of the retoucher in the hand and the grip employed have a greater influence on the active area than the extent of retoucher use, which we assessed by measuring the number of stone tool edges processed. By gripping the retoucher with all the fingers of one hand, the knapper automatically applies greater force, which results in the removal of more bone. Comparison of experimental bone retouchers with those recovered from Middle Paleolithic archaeological contexts in Chagyrskaya Cave (Altai, Russia) revealed that Altai Neanderthals practiced two methods of grasping bone retouchers, with a three-finger pinch grip being dominant. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Genetic insights into the social organization of Neanderthals

    Get PDF
    Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1–8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father–daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals’ genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range

    ERS statement: A core outcome set for clinical trials evaluating the management of COPD exacerbations

    Get PDF
    Clinical trials evaluating the management of acute exacerbations of COPD assess heterogeneous outcomes, often omitting those that are clinically relevant or more important to patients. We have developed a core outcome set, a consensus-based minimum set of important outcomes that we recommend are evaluated in all future clinical trials on exacerbations management, to improve their quality and comparability. COPD exacerbations outcomes were identified through methodological systematic reviews and qualitative interviews with 86 patients from 11 countries globally. The most critical outcomes were prioritised for inclusion in the core outcome set through a two-round Delphi survey completed by 1063 participants (256 patients, 488 health professionals and 319 clinical academics) from 88 countries in five continents. Two global, multi-stakeholder, virtual consensus meetings were conducted to 1) finalise the core outcome set and 2) prioritise a single measurement instrument to be used for evaluating each of the prioritised outcomes. Consensus was informed by rigorous methodological systematic reviews. The views of patients with COPD were accounted for at all stages of the project. Survival, treatment success, breathlessness, quality of life, activities of daily living, the need for a higher level of care, arterial blood gases, disease progression, future exacerbations and hospital admissions, treatment safety and adherence were all included in the core outcome set. Focused methodological research was recommended to further validate and optimise some of the selected measurement instruments. The panel did not consider the prioritised set of outcomes and associated measurement instruments to be burdensome for patients and health professionals to use

    Genetic insights into the social organization of Neanderthals

    Get PDF
    Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1–8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father–daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals’ genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range

    Genetic insights into the social organization of Neanderthals

    No full text
    Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1–8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father–daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals’ genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range

    Genetic insights into the social organization of Neanderthals

    No full text
    International audienceGenomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range

    Genetic insights into the social organization of Neanderthals

    No full text
    International audienceGenomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range

    World Workshop on Oral Medicine VI: a systematic review of medication-induced salivary gland dysfunction: prevalence, diagnosis, and treatment

    No full text
    corecore