17 research outputs found

    Sincosite Raman IR XRD

    No full text
    sincosite Raman spectra, IR Spectra and XR

    Sincosite Raman IR XRD

    No full text
    sincosite Raman spectra, IR Spectra and XR

    Enhanced interlayer trapping of Pb(II) ions within kaolinite layers:intercalation, characterization, and sorption studies

    No full text
    Lead (Pb(II)) pollution in water poses a serious threat to human health in many parts of the world. In the past decades, research has been aimed at developing efficient and cost-effective methods to address the problem. In this study, dimethyl sulfoxide (DMSO) and potassium acetate (K-Ac) intercalated kaolinite complexes were synthesized and subsequently utilized for Pb(II) removal from water. The intercalation of kaolinite with DMSO was found to be useful for expanding the interlayer space of the clay mineral from 0.72 to 1.12 nm. Kaolinite intercalation with K-Ac (KDK) increased the interlayer space from 1.12 to 1.43 nm. The surface area of KDK was found to be more than threefold higher as compared to natural kaolinite (NK). Batch experimental results revealed that the maximum Pb(II) uptake capacity of KDK was 46.45 mg g−1 which was higher than the capacity of NK (15.52 mg g−1). Reusability studies showed that KDK could be reused for 5 cycles without substantially losing its adsorption capacity. Furthermore, fixed-bed column tests confirmed the suitability of KDK in continuous mode for Pb(II) removal. Successful application of intercalated kaolinite for Pb(II) adsorption in batch and column modes suggests its application in water treatment (especially removal of divalent metals)

    Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells

    No full text
    Sb(2)S(3)-sensitized mesoporous-TiO(2) solar cells using several conjugated polymers as hole-transporting materials (HTMs) are fabricated. We found that the cell performance was strongly cc rrelated with the chemical interaction at the interface of Sb(2)S(3) as sensitizer and the HTMs through the thiophene moieties, which led to a higher fill factor (FF), open-circuit voltage (V(oc)), and short-circuit current density (J(sc)). With the application of PCPDTBT (poly(2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)) as a HTM in a Sb(2)S(3)-sensitized solar cell, overall power conversion efficiencies of 6.18, 6.57, and 6.53% at 100, 50, and 10% solar irradiation, respectively, were achieved with a metal maskclose9
    corecore