3,757 research outputs found

    Probing the nucleotide-binding activity of a redox sensor: two-component regulatory control in chloroplasts

    Get PDF
    Two-component signal transduction systems mediate adaptation to environmental changes in bacteria, plants, fungi, and protists. Each two-component system consists of a sensor histidine kinase and a response regu- lator. Chloroplast sensor kinase (CSK) is a modified sensor histidine kinase found in chloroplasts—photosynthetic organelles of plants and algae. CSK regulates the tran- scription of chloroplast genes in response to changes in photosynthetic electron transport. In this study, the full- length and truncated forms of Arabidopsis CSK proteins were overexpressed and purified in order to characterise their kinase and redox sensing activities. Our results show that CSK contains a modified kinase catalytic domain that binds ATP with high affinity and forms a quinone adduct that may confer redox sensing activity

    Antibacterial activity of whole plant extract of Marrubium vulgare

    Get PDF
    The antibacterial activity of the methanolic extract of Marrubium vulgare whole plant was tested by disc diffusion method. Zones of Inhibition produced by methanolic extract in a dose of 50, 100, 200, 400 and600 mg/ml against selected strains was measured and compared with those of standard discs of antibiotic ciprofloxacin (10 ìg/ml)

    A critical appraisal of McKinnon's complementarity hypothesis: Does the real rate of return on money matter for investment in developing countries?

    Get PDF
    This is the post-print version of the final paper published in World Development. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.McKinnon’s [McKinnon, R. I. (1973). Moneyandcapitalineconomicdevelopment. Washington, DC: The Brookings Institution] complementarity hypothesis predicts that money and investment are complementary due to self-financed investment, so that a real deposit rate is the key determinant of capital formation for developing economies. This paper critically appraises this contention by conducting a vigorous empirical approach using panel data for 107 developing countries. The long-run and dynamic estimation results based on McKinnon’s theoretical model are supportive of the hypothesis. However, when the investment model is conditioned by factors such as financial development, different income levels across developing countries, external inflows, public finance, and trade constraints, the credibility of the hypothesis is undermined

    Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury (TBI) is a major cause of preventable death and serious morbidity in young adults. This complex pathological condition is characterized by significant blood brain barrier (BBB) leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. Following other brain injuries, nitric oxide modulators such as S-nitrosoglutathione (GSNO) maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether GSNO shows efficacy in a rat model of experimental TBI.</p> <p>Methods</p> <p>TBI was induced by controlled cortical impact (CCI) in adult male rats. GSNO (50 μg/kg body weight) was administered at two hours after CCI. GSNO-treated injured animals (CCI+GSNO group) were compared with vehicle-treated injured animals (CCI+VEH group) in terms of tissue morphology, BBB leakage, edema, inflammation, cell death, and neurological deficit.</p> <p>Results</p> <p>Treatment of the TBI animals with GSNO reduced BBB disruption as evidenced by decreased Evan's blue extravasation across brain, infiltration/activation of macrophages (ED1 positive cells), and reduced expression of ICAM-1 and MMP-9. The GSNO treatment also restored CCI-mediated reduced expression of BBB integrity proteins ZO-1 and occludin. GSNO-mediated improvements in tissue histology shown by reduction of lesion size and decreased loss of both myelin (measured by LFB staining) and neurons (assayed by TUNEL) further support the efficacy of GSNO therapy. GSNO-mediated reduced expression of iNOS in macrophages as well as decreased neuronal cell death may be responsible for the histological improvement and reduced exacerbations. In addition to these biochemical and histological improvements, GSNO-treated injured animals recovered neurobehavioral functions as evaluated by the rotarod task and neurological score measurements.</p> <p>Conclusion</p> <p>GSNO is a promising candidate to be evaluated in humans after brain trauma because it not only protects the traumatic penumbra from secondary injury and improves overall tissue structure but also maintains the integrity of BBB and reduces neurologic deficits following CCI in a rat model of experimental TBI.</p

    Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production.

    Get PDF
    Tin-based chalcogenide semiconductors, though attractive materials for photovoltaics, have to date exhibited poor performance and stability for photoelectrochemical applications. Here, a novel strategy is reported to improve performance and stability of tin monosulfide (SnS) nanoplatelet thin films for H2 production in acidic media without any use of sacrificial reagent. P-type SnS nanoplatelet films are coated with the n-CdS buffer layer and the TiO2 passivation layer to form type II heterojunction photocathodes. These photocathodes with subsequent deposition of Pt nanoparticles generate a photovoltage of 300 mV and a photocurrent density of 2.4 mA cm-2 at 0 V versus reversible hydrogen electrode (RHE) for water splitting under simulated visible-light illumination (λ &gt; 500 nm, Pin = 80 mW cm-2). The incident photon-to-current efficiency at 0 V versus RHE for H2 production reach a maximum of 12.7% at 575 nm with internal quantum efficiency of 13.8%. The faradaic efficiency for hydrogen evolution remains close to unity after 6000 s of illumination, confirming the robustness of the heterojunction for solar H2 production

    Platelet-rich plasma induces post-natal maturation of immature articular cartilage and correlates with LOXL1 activation

    Get PDF
    Platelet-­rich plasma (PRP) is used to stimulate the repair of acute and chronic cartilage damage even though there is no definitive evidence of how this is achieved. Chondrocytes in injured and diseased situations frequently re­ express phenotypic biomarkers of immature cartilage so tissue maturation is a potential pathway for restoration of normal structure and function. We used an in vitro model of growth factor­induced maturation to perform a comparative study in order to determine whether PRP can also induce this specific form of remodeling that is characterised by increased cellular proliferation and tissue stiffness. Gene expression patterns specific for maturation were mimicked in PRP treated cartilage, with chondromodulin, collagen types II/X downregulated, deiodinase II and netrin­1 upregulated. PRP increased cartilage surface cell density 1.5­fold (P &#60; 0.05), confirmed by bromodeoxyuridine incorporation and proportionate increases in proliferating cell nuclear antigen gene expression. Atomic force microscopy analysis of PRP and growth factor treated cartilage gave a 5­fold increase in stiffness correlating with a 10­fold upregulation of lysyl oxidase like­1 gene expression (P &#60; 0.001). These data show PRP induces key aspects of post­natal maturation in immature cartilage and provides the basis to evaluate a new biological rationale for its activity when used clinically to initiate joint repair

    S-Nitrosoglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury (TBI) induces primary and secondary damage in both the endothelium and the brain parenchyma, collectively termed the neurovascular unit. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury in the neurovascular unit following TBI. In activated endothelial cells, excessive superoxide reacts with nitric oxide (NO) to form peroxynitrite. Peroxynitrite has been implicated in blood brain barrier (BBB) leakage, altered metabolic function, and neurobehavioral impairment. S-nitrosoglutathione (GSNO), a nitrosylation-based signaling molecule, was reported not only to reduce brain levels of peroxynitrite and oxidative metabolites but also to improve neurological function in TBI, stroke, and spinal cord injury. Therefore, we investigated whether GSNO promotes the neurorepair process by reducing the levels of peroxynitrite and the degree of oxidative injury.</p> <p>Methods</p> <p>TBI was induced by controlled cortical impact (CCI) in adult male rats. GSNO or 3-Morpholino-sydnonimine (SIN-1) (50 μg/kg body weight) was administered orally two hours following CCI. The same dose was repeated daily until endpoints. GSNO-treated (GSNO group) or SIN-1-treated (SIN-1 group) injured animals were compared with vehicle-treated injured animals (TBI group) and vehicle-treated sham-operated animals (Sham group) in terms of peroxynitrite, NO, glutathione (GSH), lipid peroxidation, blood brain barrier (BBB) leakage, edema, inflammation, tissue structure, axon/myelin integrity, and neurotrophic factors.</p> <p>Results</p> <p>SIN-1 treatment of TBI increased whereas GSNO treatment decreased peroxynitrite, lipid peroxides/aldehydes, BBB leakage, inflammation and edema in a short-term treatment (4-48 hours). GSNO also reduced brain infarctions and enhanced the levels of NO and GSH. In a long-term treatment (14 days), GSNO protected axonal integrity, maintained myelin levels, promoted synaptic plasticity, and enhanced the expression of neurotrophic factors.</p> <p>Conclusion</p> <p>Our findings indicate the participation of peroxynitrite in the pathobiology of TBI. GSNO treatment of TBI not only reduces peroxynitrite but also protects the integrity of the neurovascular unit, indicating that GSNO blunts the deleterious effects of peroxynitrite. A long-term treatment of TBI with the same low dose of GSNO promotes synaptic plasticity and enhances the expression of neurotrophic factors. These results support that GSNO reduces the levels of oxidative metabolites, protects the neurovascular unit, and promotes neurorepair mechanisms in TBI.</p

    Rapid Visualisation of Microarray Copy Number Data for the Detection of Structural Variations Linked to a Disease Phenotype

    Get PDF
    Whilst the majority of inherited diseases have been found to be caused by single base substitutions, small insertions or deletions (<1Kb), a significant proportion of genetic variability is due to copy number variation (CNV). The possible role of CNV in monogenic and complex diseases has recently attracted considerable interest. However, until the development of whole genome, oligonucleotide micro-arrays, designed specifically to detect the presence of copy number variation, it was not easy to screen an individual for the presence of unknown deletions or duplications with sizes below the level of sensitivity of optical microscopy (3–5 Mb). Now that currently available oligonucleotide micro-arrays have in excess of a million probes, the problem of copy number analysis has moved from one of data production to that of data analysis. We have developed CNViewer, to identify copy number variation that co-segregates with a disease phenotype in small nuclear families, from genome-wide oligonucleotide micro-array data. This freely available program should constitute a useful addition to the diagnostic armamentarium of clinical geneticists

    Complete Genome Sequence of a Novel Avian Paramyxovirus (APMV-13) Isolated from a Wild Bird in Kazakhstan.

    Get PDF
    A novel avian paramyxovirus was identified during annual viral surveillance of wild bird populations in Kazakhstan in 2013. The virus was isolated from a white fronted goose (Anser albifrons) in northern Kazakhstan. Here, we report the complete genome sequence of the isolate, which we suggest should constitute a novel serotype

    Bacteriological investigation of ground water sources in selected urban areas of district Mardan, Khyber Pakhtunkhwa, Pakistan

    Get PDF
    Microbial contamination of ground water sources is a common problem in all the big cities, which endangers health and impairs quality of living . To assess this, 39 water samples were collected from highly populated 13 union councils from the urban area of district Mardan. Faecal coliform and Escherichia coli were investigated both qualitatively and quantitatively. Qualitative study showed that faecal coliform was found in 90% samples and E. coli in 56% samples. Quantitatively, faecal coliform most probable number (MPN) was ranging from 1601 to 2400 for about 28% samples, followed by 551 to 1600 and 201 to 550 for 20% samples each, 40 to 200 for 18% samples and less than 40 for about 13% samples. The major cause of the bacteriological contamination was found to be the extent of susceptibility of the water sources to intrusions from the nearest contamination source.Keywords: Mardan, urban area, microbial contamination, faecal coliform, ground water, Escherichia col
    • …
    corecore