16 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Intracellular Trafficking of Fluorescent Nanodiamonds and Regulation of Their Cellular Toxicity

    No full text
    In this paper, cellular management of fluorescent nanodiamonds (FNDs) has been studied for better understanding in the design for potential applications of FNDs in biomedicine. The FNDs have shown to be photostable probes for bioimaging and thus are well-suited, for example, long-term tracking purposes. The FNDs also exhibit good biocompatibility and, in general, low toxicity for cell labeling. To demonstrate the underlying mechanism of cells coping the low but potentially toxic effects by nondegradable FNDs, we have studied their temporal intracellular trafficking. The FNDs were observed to be localized as distinct populations inside cells in early endosomes, lysosomes, and in proximity to the plasma membrane. The localization of FNDs in early endosomes suggests the internalization of FNDs, and lysosomal localization, in turn, can be interpreted as a prestate for exocytosis via lysosomal degradation pathway. The endocytosis and exocytosis appear to be occurring simultaneously in our observations. The mechanism of continuous endocytosis and exocytosis of FNDs could be necessary for cells to maintain normal proliferation. Furthermore, 120 h cell growth assay was performed to verify the long-term biocompatibility of FNDs for cellular studies

    CIP2A constrains Th17 differentiation by modulating STAT3 signaling

    No full text
    Summary Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is an oncogene and a potential cancer therapy target protein. Accordingly, a better understanding of the physiological function of CIP2A, especially in the context of immune cells, is a prerequisite for its exploitation in cancer therapy. Here, we report that CIP2A negatively regulates interleukin (IL)-17 production by Th17 cells in human and mouse. Interestingly, concomitant with increased IL-17 production, CIP2A-deficient Th17 cells had increased strength and duration of STAT3 phosphorylation. We analyzed the interactome of phosphorylated STAT3 in CIP2A-deficient and CIP2A-sufficient Th17 cells and indicated together with genome-wide gene expression profiling, a role of Acylglycerol Kinase (AGK) in the regulation of Th17 differentiation by CIP2A. We demonstrated that CIP2A regulates the strength of the interaction between AGK and STAT3, and thereby modulates STAT3 phosphorylation and expression of IL-17 in Th17 cells
    corecore