172 research outputs found

    Prevalence, fate and effects of plastic in freshwater environments:New findings and next steps

    Get PDF
    At a time when a global pandemic rightly holds our collective attention, environmental issues have taken a backseat to the ongoing battle against Covid-19 [...

    Freshwater plastic pollution:Recognizing research biases and identifying knowledge gaps

    Get PDF
    The overwhelming majority of research conducted to date on plastic pollution (all size fractions) has focused on marine ecosystems. In comparison, only a few studies provide evidence for the presence of plastic debris in freshwater environments. However, owing to the numerous differences between freshwater studies (including studied species and habitats, geographical locations, social and economic contexts, the type of data obtained and also the broad range of purposes), they show only fragments of the overall picture of freshwater plastic pollution. This highlights the lack of a holistic vision and evidences several knowledge gaps and data biases. Through a bibliometric analysis we identified such knowledge gaps, inconsistencies and survey trends of plastic pollution research within freshwater ecosystems. We conclude that there is a continued need to increase the field-data bases about plastics (all size fractions) in freshwater environments. This is particularly important to estimate river plastic emissions to the worldÂŽs oceans. Accordingly, data about macroplastics from most polluted and larger rivers are very scarce, although macroplastics represent a huge input in terms of plastics weight. In addition, submerged macroplastics may play an important role in transporting mismanaged plastic waste, however almost no studies exist. Although many of the most plastic polluted rivers are in Asia, only 14% of the reviewed studies were carried out in this continent (even though the major inland fisheries of the world are located in AsiaÂŽs rivers). The potential damage caused by macroplastics on a wide range of freshwater fauna is as yet undetermined, even though negative impacts have been well documented in similar marine species. We also noted a clear supremacy of microplastic studies over macroplastic ones, even though there is no reason to assume that freshwater ecosystems remain unaffected by macro-debris. Finally, we recommend focusing monitoring efforts in most polluted rivers worldwide, but particularly in countries with rapid economic development and poor waste management.Fil: Blettler, Martin Cesar Maria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto Nacional de LimnologĂ­a. Universidad Nacional del Litoral. Instituto Nacional de LimnologĂ­a; ArgentinaFil: Abrial, Elie. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto Nacional de LimnologĂ­a. Universidad Nacional del Litoral. Instituto Nacional de LimnologĂ­a; ArgentinaFil: Khan, Farhan R.. Roskilde University;Fil: Sivri, Nuket. Istanbul Üniversitesi;Fil: EspĂ­nola, Luis Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto Nacional de LimnologĂ­a. Universidad Nacional del Litoral. Instituto Nacional de LimnologĂ­a; Argentin

    Insights from international environmental legislation and protocols for the global plastic treaty

    Get PDF
    Correction to: Insights from international environmental legislation and protocols for the global plastic treaty (Scientific Reports, (2024), 14, 1, (2750), 10.1038/s41598-024-53099-9) Margrethe Aanesen, Julide C. Ahi, Tenaw G. Abate, Farhan R. Khan, Frans P. de Vries, Hauke Kite-Powell, Nicola J. Beaumont, 2024, vol. 14, issue 1. Scientific Reports http://www.scopus.com/inward/record.url?scp=85188545299&partnerID=8YFLogxK, https://doi.org/10.1038/s41598-024-57568-zPeer reviewe

    A brief perspective on environmental science in the anthropocene:Recalibrating, rethinking and re-evaluating to meet the challenge of complexity

    Get PDF
    A convincing case has been made that the scale of human activity has reached such pervasiveness that humans are akin to a force of nature. How environmental science responds to the many new challenges of the Anthropocene is at the forefront of the field. The aim of this perspective is to describe Anthropocene as a concept and a time period and discuss its relevance to the contemporary study of environmental science. Specifically, we consider areas in environmental science which may need to be revisited to adjust to complexity of the new era: (a) recalibrate the idea of environmental baselines as Anthropogenic baselines; (b) rethink multiple stressor approaches to recognize a system under flux; (c) re-evaluate the relationship of environmental science with other disciplines, particularly Earth Systems Science, but also social sciences and humanities. The all-encompassing nature of the Anthropocene necessitates the need to revise and reorganize to meet the challenge of complexity.</p&gt

    Insights into the strong in-vitro anticancer effects for bis(triphenylphosphane)iminium compounds having perchlorate, tetrafluoridoborate and bis(chlorido)argentate anions

    Get PDF
    Three new compounds containing the bis(triphenylphosphane)iminium cation (PPN+) with ClO4−, BF4− and [AgCl2]− as counter anions have been synthesized and structurally characterized. The two derivatives with ClO4− and BF4− were found to be isostructural by single crystal X-ray diffraction. Interestingly, the three compounds show extremely potent antiproliferative effects against the human cancer cell line SKOV3. To gain insights into the possible mechanisms of biological action, several intracellular targets have been considered. Thus, DNA binding has been evaluated, as well as the effects of the compounds on the mitochondrial function. Furthermore, the compounds have been tested as possible inhibitors of the seleno-enzyme thioredoxin reductase

    Prevalence and characterisation of microfibres along the Kenyan and Tanzanian coast

    Get PDF
    Microplastic pollution is ubiquitous, with textiles being a major source of one of the dominant microplastic types—microfibres. Microfibres have been discovered in the aquatic environment and marine biota, demonstrating direct infiltration in the environment. However, the impact of non-plastic microfibres has been overlooked until recently despite their prevalence and the ecotoxicological risk posed by chemical dyes and finishes used during processing. During an expedition from Lamu to Zanzibar (East Africa), a citizen science strategy was employed to innovate, educate and influence microfibre pollution reform through the Flipflopi project, a circular economy effort to stop the use of single-use plastic. Simple sampling methods were developed to replace costly equipment, which local citizens could use to partake in the collection and sampling of surface water samples from the previously understudied Kenyan and Tanzanian coast. To maintain the reliability of samples and to minimise contamination, a forensic science strategy was embedded throughout the methodology of the study, collection and analysis of the samples. A total of 2,403 microfibres from 37 sites were recovered and fully characterised with 55% found to be of natural origin, 8% regenerated cellulosic and 37% synthetic microfibres. Natural microfibres were in higher abundance in 33 of the 37 sampled sites. Congruent with recent studies, these findings further support the need for greater understanding of the anthropogenic impact of natural microfibres
    • 

    corecore