9,628 research outputs found
Low scale B-L extension of the Standard Model at the LHC
The fact that neutrinos are massive indicates that the Standard Model (SM)
requires extension. We propose a low energy (<TeV) B-L extension of the SM,
which is based on the gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}. We
show that this model provides a natural explanation for the presence of three
right-handed neutrinos in addition to an extra gauge boson and a new scalar
Higgs. Therefore, it can lead to very interesting phenomenological implications
different from the SM results which can be tested at the LHC. Also we analyze
the muon anomalous magnetic moment in this class of models. We show that
one-loop with exchange Z' may give dominant new contribution ~ few x 10^{-11}.Comment: 12 page
Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells
In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature
process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide
nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2
NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually
Sterile neutrino dark matter in extension of the standard model and galactic 511 keV line
Sterile right-handed neutrinos can be naturally embedded in a low scale
gauged extension of the standard model. We show that, within a low
reheating scenario, such a neutrino is an interesting candidate for dark
matter. We emphasize that if the neutrino mass is of order of MeV, then it
accounts for the measured dark matter relic density and also accommodates the
observed flux of 511 keV photons from the galactic bulge.Comment: 10 pages, 1 figure, references added, final version appeared in JCA
Fermion Masses and Mixing in Four and More Dimensions
We give an overview of recent progress in the study of fermion mass and
flavor mixing phenomena. Mass matrix ansatze are considered within the SM and
SUSY GUTs where some predictive frameworks based on SU(5) and SO(10) are
reviewed. We describe a variety of schemes to construct quark mass matrices in
extra dimensions focusing on four major classes: models with the SM residing on
3-brane, models with universal extra dimensions, models with split fermions and
models with warped extra dimensions. We outline how realistic patterns of quark
mass matrices could be derived from orbifold models in heterotic superstring
theory. Finally, we address the fermion mass problem in intersecting D-branes
scenarios, and present models with D6-branes able to give a good quantitatively
description of quark masses and mixing. The role of flavor/CP violation problem
as a probe of new physics is emphasized.Comment: a review based on seminars presented by S.K. in different places, 34
pages, late
Improved Refractory Aluminosilicate Bricks Through Nano Zirconia Additions
The physico-mechanical and refractory properties of refractory bricks, prepared from 50 wt.% kaolin and 50 wt.% alumina, were improved through the addition of different contents (2, 4, 6, 8 and 10 wt. %) of nano zirconia powder. The densification parameters (bulk density and apparent porosity), mechanical properties (cold crushing strength) and refractory properties (thermal shock resistance) were tested for the prepared refractory bricks fired at 1500 oC. The mineralogical composition of the prepared zirconia and the refractory bricks were followed by X-ray diffraction analysis (XRD) whereas while their microstructure and chemical constituents were depicted using scanning electron microscope attached with energy dispersive x-ray unit (SEM + EDAX). The refractory brick samples containing 8 wt. % of nano zirconia was considered as the optimum among the investigated samples as it shows the best sintering, mechanical and refractory properties, these were correlated with their recognized assemblage of minerals; mullite-cristobalite-zirconia
Evaluation of the microstructure and mechanical properties of a new modified cast and laser-melted AA7075 alloy
The mechanical properties and microstructure of as-cast and homogenized AA7075 were investigated. This alloy was modified by adding transition elements 0.3%Sc + 0.5%Zr, 1%Ti + 0.2%B, and 1%Fe + 1%Ni for use in additive manufacturing applications. After adding Ti + B and Sc + Zr, the structure became uniform and finer with the formation of the Al3(Sc, Zr) and TiB2 phases. Coarse structures were obtained with the formation of an extremely unfavorable morphology, close to a needle-like structure when Fe + Ni was added. The mechanical properties of the modified alloys were increased compared to those of the standard alloy, where the best ultimate tensile strength (UTS) and yield strength (YS) were obtained in the AA7075-TiB alloy compared to the standard alloy in as-cast and homogenized conditions, and the highest hardness value was provided by Fe + Ni additives. The effect of the laser melting process on the microstructure and mechanical properties was investigated. Single laser melts were performed on these alloys using 330 V and a scanning speed of 8 mm/s. During the laser melting, the liquation of the alloying elements occurred due to non-equilibrium solidification. A change in the microstructures was observed within the melt zone and heat-affected zone (HAZ). The hardness of the laser-melted zone (LMZ) after adding the modification elements was increased in comparison with that of the standard alloy. Corrosion testing was performed using a solution of 100 mL distilled water, 3.1 g NaCl, and 1 mL HCl over 5, 10, and 30 min and 1 and 2 h. The corrosion resistance of the alloy modified with FeNi was low because of the non-uniform elemental distribution along the LMZ, but in the case of modification with ScZr and TiB, the corrosion resistance was better compared to that of the standard alloy. © 2019 by the authors.Ministry of Science and Higher Education of the Russian FederationThe author (Asmaa M. Khalil) gratefully acknowledges financial support from the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of MISiS (Support project for young research engineers)
Two-Dimensional Infrared Spectroscopy of Antiparallel β-Sheet Secondary Structure
We investigate the sensitivity of femtosecond Fourier transform two-dimensional infrared spectroscopy to protein secondary structure with a study of antiparallel β-sheets. The results show that 2D IR spectroscopy is more sensitive to structural differences between proteins than traditional infrared spectroscopy, providing an observable that allows comparison to quantitative models of protein vibrational spectroscopy. 2D IR correlation spectra of the amide I region of poly-L-lysine, concanavalin A, ribonuclease A, and lysozyme show cross-peaks between the IR-active transitions that are characteristic of amide I couplings for polypeptides in antiparallel hydrogen-bonding registry. For poly-L-lysine, the 2D IR spectrum contains the eight-peak structure expected for two dominant vibrations of an extended, ordered antiparallel β-sheet. In the proteins with antiparallel β-sheets, interference effects between the diagonal and cross-peaks arising from the sheets, combined with diagonally elongated resonances from additional amide transitions, lead to a characteristic “Z”-shaped pattern for the amide I region in the 2D IR spectrum. We discuss in detail how the number of strands in the sheet, the local configurational disorder in the sheet, the delocalization of the vibrational excitation, and the angle between transition dipole moments affect the position, splitting, amplitude, and line shape of the cross-peaks and diagonal peaks.
Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging
Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into three-dimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted therapy. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound images at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 h. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications
Study of genetic variation of some eggplant cultivars through RAPD-PCR molecular markers and its relatedness to phomopsis blight disease reaction
Disease susceptibility and genetic variability in 10 eggplant genotypes were studied after inoculating Phomopsis vexans under confined field conditions. Random amplified polymorphic DNA (RAPD) markers were used to assess genetic variation and relationships among eggplant genotypes. The disease index of leaves ranged 0.208-13.79%, while fruit infection ranged 2.15-42.76%. Two varieties, Dohazari G and Laffa S, were found to be susceptible, 6 were moderately resistant, 1 was moderately susceptible, and BAU Begun-1 was resistant to P. vexans. Amplification of genomic DNA by using 3 RAPD primers produced 20 bands: 14 (70%) were polymorphic and 6 (30%) were monomorphic. The highest intra-variety similarity indices values were found in ISD 006, Ishurdi L, Jessore L, and BAU Begun-1 (100%), while the lowest was in Dohazari G (90%). The lowest genetic distance (0.0513) and the highest genetic identity (0.9500) were observed between the ISD 006 and Ishurdi L combinations. A comparatively higher genetic distance (0.3724) and the lowest genetic identity (0.6891) were observed between the ISD 006 and Dohazari G combinations. A dendogram was constructed based on Nei’s genetic distance, which produced 2 main clusters of the genotypes - Cluster I: ISD 006, Ishurdi L, Marich begun L, BAU Begun-1, Marich begun S, and Chega and Cluster 2: Laffa S, Dohazari G, Jessore L, and Singhnath. Genetic variation and its relationship with disease susceptibility were assessed using RAPD markers, to develop disease-resistant varieties and improve eggplant crops
PHYSICO-CHEMICAL CHARACTERISTICS AND PHYSIOLOGICAL CHANGES IN OREOCHROMIS NILOTICUS FROM ROSETTA BRANCH OF THE RIVER NILE
The River Nile is the essence of life in Egypt, but during the last decades its water quality has been changed by several factors, as a result of anthropogenic activities. The western branch of the River Nile is Rosetta Branch receives different types of pollution. The main origins of most pollutants are El-Rahawy drain and industrial activities in Kafr El-Zayat city. Water samples were analysed for physico-chemical parameters and blood samples for biochemical parameters of the Nile Tilapia; Oreochromis niloticus, to investigate the responses of fish towards these different types of pollution. Samples were collected from three sites from Rosetta branch of the River Nile during summer 2014 and winter 2015. S2 and S3 recorded an increase in water electrical conductivity (EC), total dissolved solids (TDS), biological oxygen demand (BOD) and chemical oxygen demand (COD), while dissolved oxygen (DO) and pH have been depleted. Nitrite, nitrates and ammonia levels also showed an elevation, especially in winter. Moreover, fundamental biochemical parameters such as; glucose, total protein, total lipid, albumin, cholesterol, triglycerides, kidney functions and liver functions in blood serum of O. niloticus recorded remarkable alterations, indicating stressful conditions, caused by the profound pollutants and poor water quality of water at these sites
- …