25 research outputs found

    The effects of cutouts on output, mean energy and percentage depth dose of 12 and 14 MeV electrons

    No full text
    Electron field-shaping cerrobend cutouts on the linear accelerator applicator have some effects on the output and percentage depth dose. These effects which arise from the lateral scatter nonequilibrium are particularly evident in higher energies and in cutouts with smaller radius. Dose measurements for circular, square, and triangular cutouts as well as open field was performed in a 10 × 10 cm applicator, using plane parallel type ion chamber with a 100 cm source surface distance. The Percentage Depth Doses curves were drawn and the outputs were measured for each of these cutouts. The output factors, normalized to open 10 × 10 cm field, varied between 0.891 and 0.996 depending on the energy, cutout shape, and cavity area. With the use of cutouts, R100 shifted toward the surface. The shifts ranged from 9 to 0 mm and from 13 to 0 mm for 12 and 14 MeV, respectively, depending on the shape and cavity area. For R90, R80, and R50 the ranges for observed shifts narrowed down and practically no shifts were observed for R20. We present these changes in the form of predictive formulas, which would be useful in clinical applications

    Comparison between small radiation therapy electron beams collimated by Cerrobend and tubular applicators

    No full text
    The purpose of this study was to compare the dosimetric properties of small field electron beams shaped by circular Cerrobend blocks and stainless steel tubular applicators. Percentage depth dose curves, beam profiles, and output factors of small-size circular fields from 2 to 5 cm diameter, obtained either by tubular applicators and Cerrobend blocks, were measured for 6, 10, and 15 MeV electron beam energies. All measurements were performed using a PTW microDiamond 60019 premarket prototype. An overall similar behavior between the two collimating systems can be observed in terms of PDD and beam profiles. However, Cerrobend collimators produce a higher bremsstrahlung background under irradiation with high-energy electrons. In such irradiation condition, larger output factors are observed for tubular applicators. Similar dosimetric properties are observed using circular Cerrobend blocks and stainless steel tubular applicators at lower beam energies. However, Cerrobend collimators allow the delivery of specific beam shapes, conformed to the target area. On the other hand, in high-energy irradiation conditions, tubular applicators produce a lower bremsstrahlung contribution, leading to lower doses outside the target volume. In addition, the higher output factors observed at high energies for tubular applicators lead to reduced treatment times
    corecore