174 research outputs found

    Polymerization of β-like actin from scallop adductor muscle

    Get PDF
    AbstractScallop adductor muscle β-like isoactin differs from rabbit skeletal muscle α-actin in the rate, extent and critical concentration of polymerization. The difference is temperature- and [KCl]-dependent. In the presence of DNase I scallop actin was shown to be depolymerized more rapidly than rabbit actin. It was suggested that the polymers formed by β-actin are less stable than those formed by α-actin

    Role of Actin DNase-I-Binding Loop in Myosin Subfragment 1-Induced Polymerization of G-actin: Implications for the Mechanism of Polymerization

    Get PDF
    AbstractProteolytic cleavage of actin between Gly42 and Val43 within its DNase-I-binding loop (D-loop) abolishes the ability of Ca-G-actin to spontaneously polymerize in the presence of KCl. Here we show that such modified actin is assembled into filaments, albeit at a lower rate than unmodified actin, by myosin subfragment 1 (S1) carrying the A1 essential light chain but not by S1(A2). S1 titration of pyrene-G-actin showed a diminished affinity of cleaved actin for S1, but this could be compensated for by using S1 in excess. The most significant effect of the cleavage, revealed by measuring the fluorescence of pyrene-actin and light-scattering intensities as a function of actin concentration at saturating concentrations of S1, is strong inhibition of association of G-actin-S1 complexes into oligomers. Measurements of the fluorescence of dansyl cadaverine attached to Gln41 indicate substantial inhibition of the initial association of G-actin-S1 into longitudinal dimers. The data provide experimental evidence for the critical role of D-loop conformation in both longitudinal and lateral, cross-strand actin-actin contact formation in the nucleation reaction. Electron microscopic analysis of the changes in filament-length distribution during polymerization of actin by S1(A1) and S1(A2) suggests that the mechanism of S1-induced polymerization is not substantially different from the nucleation-elongation scheme of spontaneous actin polymerization

    Virulence factors contributing to invasive activities of Serratia grimesii and Serratia proteamaculans

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Previously, we have shown that facultative pathogens Serratia grimesii and Serratia proteamaculans are capable to invade eukaryotic cells provided that they synthesize intracellular metalloprotease grimelysin or protealysin, respectively (Bozhokina et al. in Cell Biol Int 35(2):111–118, 2011). Noninvasive Escherichia coli transformed with grimelysin or protealysin gene became invasive, indicating that the protease is a virulence factor. Here we elucidated involvement of other virulence factors in the invasion of S. grimesii and S. proteamaculans. Under similar experimental conditions, the amount of S. proteamaculans internalized within human carcinoma HeLa cells was fivefold higher than that of S. grimesii. In accord with this, in S. proteamaculans, high activities of pore-forming hemolysin ShlA and extracellular metalloprotease serralysin were detected. In S. grimesii, activity of toxin ShlA was not detected, and the serralysin activity of the bacterial growth medium was very low. We also show that iron depletion strongly enhanced invasive activity of S. proteamaculans, increasing activities of hemolysin ShlA and serralysin, but did not affect S. grimesii properties. These results show that the invasive activity of S. proteamaculans is maintained, along with protealysin, by hemolysin and serralysin. On the other hand, grimelysin is so far the only known invasion factor of S.grimesii

    Purification and characterization of the proteinase ECP 32 from Escherichia coli A2 strain

    Get PDF
    The proteinase previously described as an unidentified component of E. coli A2 extracts which hydrolyses actin at a new cleavage site (Khaitlina et al. (1991) FEBS Lett. 279, 49) was isolated and further characterized. A chromatographic method of proteinase purification was developed by which a purity of more than 80% was attained. The enzyme was identified as a single, 32 kDa polypeptide (ECP 32) by SDS-PAGE and non-denaturing electrophoresis as well as by ion-exchange chromatography and gel filtration. The N-terminal sequence of ECP 32 was determined to be: AKTSSAGVVIRDIFL. The activity of ECP 32 is inhibited by o-phenanthroline, EDTA, EGTA and zincone. The EDTA-inactivated enzyme can be reactivated by cobalt, nickel and zinc ions. Based on these properties ECP 32 was classified as a metalloproteinase (EC 3.4.24). Limited proteolysis of skeletal muscle actin between Gly-42 and Val-43 was observed at enzyme substrate mass ratios of 1:25 to 1:3000. Two more sites between Ala-29 and Val-30, and between Ser-33 and Ile-34 were cleaved by ECP 32 in heat- or EDTA-inactivated actin. Besides actin, only histones and DNA-binding protein HU were found to be substrates of the proteinase, confirming its high substrate specificity. Its molecular mass, N-terminal sequence and enzymatic properties distinguish ECP 32 from any known metalloproteinases of E. coli, and we therefore conclude that it is a new enzyme

    The hemolytic propertiesof clinical isolates of Morganella morganii

    Get PDF
    Morganella morganii is a gram-negative bacterium from the Enterobacteriaceae family which causes a wide range of clinical infections sometimes with fatal consequences. It is known that more than 50% of isolates of M. morganii from clinical specimens have hemolytic activity that increase their virulence. Pore-forming toxins (PFT) represent the most common group of cytotoxic proteins which contribute the delivering of the bacterial proteins into host cells, loss of nutrients and ions by eukaryotic cells, as well as the exit of bacteria from phagosome into cytosol. In this study we investigated the hemolytic activity of two M. morganii strains. It has been shown that hemolytic activity for strain of M. morganii 4 is 3 times higher than for strain of M. morganii 1. The maximum hemolytic activity is observed in LB medium but synthesis of hemolysins is higher in synthetic urine. Finally, the PCR-analysis of 5 hypothetical hemolysin genes has shown that strain M. morganii 1 does not contain homologous of α-hemolysin from E. coli that may explain the observed differences in hemolytic activity of the investigated strains

    Early Myocardial Function Affects Endocardial Cushion Development in Zebrafish

    Get PDF
    Function of the heart begins long before its formation is complete. Analyses in mouse and zebrafish have shown that myocardial function is not required for early steps of organogenesis, such as formation of the heart tube or chamber specification. However, whether myocardial function is required for later steps of cardiac development, such as endocardial cushion (EC) formation, has not been established. Recent technical advances and approaches have provided novel inroads toward the study of organogenesis, allowing us to examine the effects of both genetic and pharmacological perturbations of myocardial function on EC formation in zebrafish. To address whether myocardial function is required for EC formation, we examined silent heart (sih(−/−)) embryos, which lack a heartbeat due to mutation of cardiac troponin T (tnnt2), and observed that atrioventricular (AV) ECs do not form. Likewise, we determined that cushion formation is blocked in cardiofunk (cfk(−/−)) embryos, which exhibit cardiac dilation and no early blood flow. In order to further analyze the heart defects in cfk(−/−) embryos, we positionally cloned cfk and show that it encodes a novel sarcomeric actin expressed in the embryonic myocardium. The Cfk(s11) variant exhibits a change in a universally conserved residue (R177H). We show that in yeast this mutation negatively affects actin polymerization. Because the lack of cushion formation in sih- and cfk-mutant embryos could be due to reduced myocardial function and/or lack of blood flow, we approached this question pharmacologically and provide evidence that reduction in myocardial function is primarily responsible for the defect in cushion development. Our data demonstrate that early myocardial function is required for later steps of organogenesis and suggest that myocardial function, not endothelial shear stress, is the major epigenetic factor controlling late heart development. Based on these observations, we postulate that defects in cardiac morphogenesis may be secondary to mutations affecting early myocardial function, and that, in humans, mutations affecting embryonic myocardial function may be responsible for structural congenital heart disease

    Physico-chemical properties of actin cleaved with bacterial protease from E. coli A2 strain

    Get PDF
    The 36 kDa fragment of actin molecule obtained with the protease from E. coli A2 strain [(1988) FEBS Lett. 228, 172] was shown to begin with Val-43 and retain the COOH-terminal amino acid residues of the parent molecule. The E. coli protease split actin preserves the NH2-terminal part of the polypeptide chain as well as the native conformation of actin molecule. However, the E. coli protease split actin failed to polymerize in 0.1 M KCl, suggesting that integrity of actin molecule between Gly-42 and Val-43 is crucial for actin polymerization. © 1991

    Tropomyosin-mediated Regulation of Cytoplasmic Myosins

    Get PDF
    The ability of the actin-based cytoskeleton to rapidly reorganize is critical for maintaining cell organization and viability. The plethora of activities in which actin polymers participate require different biophysical properties, which can vary significantly between the different events that often occur simultaneously at separate cellular locations. In order to modify the biophysical properties of an actin polymer for a particular function, the cell contains diverse actin-binding proteins that modulate the growth, regulation and molecular interactions of actin-based structures according to functional requirements. In metazoan and yeast cells, tropomyosin is a key regulator of actin-based structures. Cells have the capacity to produce multiple tropomyosin isoforms, each capable of specifically associating as copolymers with actin at distinct cellular locations to fine-tune the functional properties of discrete actin structures. Here, we present a unifying theory in which tropomyosin isoforms critically define the surface landscape of copolymers with cytoplasmic ?- or ?-actin. Decoration of filamentous actin with different tropomyosin isoforms determines the identity and modulates the activity of the interacting myosin motor proteins. Conversely, changes in the nucleotide state of actin and posttranslational modifications affect the composition, morphology, subcellular localization and allosteric coupling of the associated actin-based superstructures
    corecore