33 research outputs found

    FDE-vdW: A van der Waals Inclusive Subsystem Density-Functional Theory

    Full text link
    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the Fluctuation-Dissipation Theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e. it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant

    Derivation of the Supermolecular Interaction Energy from the Monomer Densities in the Density Functional Theory

    Full text link
    The density functional theory (DFT) interaction energy of a dimer is rigorously derived from the monomer densities. To this end, the supermolecular energy bifunctional is formulated in terms of mutually orthogonal sets of orbitals of the constituent monomers. The orthogonality condition is preserved in the solution of the Kohn-Sham equations through the Pauli blockade method. Numerical implementation of the method provides interaction energies which agree with those obtained from standard supermolecular calculations within less than 0.1% error for three example functionals: Slater-Dirac, PBE0 and B3LYP, and for two model van der Waals dimers: Ne2 and (C2H4)2, and two model H-bond complexes: (HF)2 and (NH3)2.Comment: 6 pages, 1 figure, REVTeX

    Radiation chemistry of solid-state carbohydrates using EMR

    Get PDF
    We review our research of the past decade towards identification of radiation-induced radicals in solid state sugars and sugar phosphates. Detailed models of the radical structures are obtained by combining EPR and ENDOR experiments with DFT calculations of g and proton HF tensors, with agreement in their anisotropy serving as most important criterion. Symmetry-related and Schonland ambiguities, which may hamper such identification, are reviewed. Thermally induced transformations of initial radiation damage into more stable radicals can also be monitored in the EPR (and ENDOR) experiments and in principle provide information on stable radical formation mechanisms. Thermal annealing experi-ments reveal, however, that radical recombination and/or diamagnetic radiation damage is also quite important. Analysis strategies are illustrated with research on sucrose. Results on dipotassium glucose-1-phosphate and trehalose dihydrate, fructose and sorbose are also briefly discussed. Our study demonstrates that radiation damage is strongly regio-selective and that certain general principles govern the stable radical formation

    Interaction energies in hydrogen-bonded systems: A testing ground for subsystem formulation of density-functional theory

    No full text
    The formalism based on the total energy bifunctional (E[rhoI,rhoII]) is used to derive interaction energies for several hydrogen-bonded complexes (water dimer, HCN–HF, H2CO–H2O, and MeOH–H2O). Benchmark ab initio data taken from the literature were used as a reference in the assessment of the performance of gradient-free [local density approximation (LDA)] and gradient-dependent [generalized gradient approximation (GGA)] approximations to the exchange-correlation and nonadditive kinetic-energy components of E[rhoI,rhoII]. On average, LDA performs better than GGA. The average absolute error of calculated LDA interaction energies amounts to 1.0 kJ/mol. For H2CO–H2O and H2O–H2O complexes, the potential-energy curves corresponding to the stretching of the intermolecular distance are also calculated. The positions of the minima are in a good agreement (less than 0.2 Å) with the reference ab initio data. Both variational and nonvariational calculations are performed to assess the energetic effects associated with complexation-induced deformations of molecular electron densities

    The effect of composition on optical and photocatalytic properties of novel visible light response materials Bi26-xMgxO40

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала

    One-Electron Equations for Embedded Electron Density and Their Applications to Study Electronic Structure of Atoms and Molecules in Condensed Phase

    Get PDF
    Recent applications of one-electron equations for embedded electron density introduced originally for multi-level modeling of solvated molecules (T.A. Wesolowski, A. Warshel, J. Phys. Chem. 1993, 97, 8050) are reviewed. The considered applications concern properties directly related to the electronic structure of molecules (or an atom) in condensed phase such as: i) localized electronic excitations in a chromophore involved in a hydrogen-bonded intermolecular complex; ii) UV/Vis spectra of acetone in water; and iii) energy levels of f-orbitals for lanthanide cations in a crystalline environment. For each case studied, the embedding potential is represented graphically and its qualitative features are discussed
    corecore