66 research outputs found

    Embedding nonrelativistic physics inside a gravitational wave

    Full text link
    Gravitational waves with parallel rays are known to have remarkable properties: Their orbit space of null rays possesses the structure of a non-relativistic spacetime of codimension-one. Their geodesics are in one-to-one correspondence with dynamical trajectories of a non-relativistic system. Similarly, the null dimensional reduction of Klein-Gordon's equation on this class of gravitational waves leads to a Schroedinger equation on curved space. These properties are generalized to the class of gravitational waves with a null Killing vector field, of which we propose a new geometric definition, as conformally equivalent to the previous class and such that the Killing vector field is preserved. This definition is instrumental for performing this generalization, as well as various applications. In particular, results on geodesic completeness are extended in a similar way. Moreover, the classification of the subclass with constant scalar invariants is investigated.Comment: 56 pages, 9 figures, v3:Minor correction

    Existence and Uniqueness of Equilibrium in Nonoptimal Unbounded Infinite Horizon Economies

    Get PDF
    In applied work in macroeconomics and finance, nonoptimal infinite horizon economies are often studied in the the state space is unbounded. Important examples of such economies are single vector growth models with production externalities, valued fiat money, monopolistic competition, and/or distortionary government taxation. Although sufficient conditions for existence and uniqueness of Markovian equilibrium are well known for the compact state space case, no similar sufficient conditions exist for unbounded growth. This paper provides such a set of sufficient conditions, and also present a computational algorithm that will prove asymptotically consistent when computing Markovian equilibrium

    Symétries nonrelativistes et gravité de Newton-Cartan

    Get PDF
    With the advent of general relativity, the profound interaction between the geometry of spacetime and gravitational phenomena became a truism of modern physics. However, the intimate relationship between spacetime geometry and gravitation is by no means restricted to relativistic physics but can in fact be successfully applied to nonrelativistic physics, the paradigmatic example being E. Cartan geometrisation of Newtonian gravity. This geometrisation of nonrelativistic gravitation involves some nonrelativistic structures whose discrepancies in comparison with their relativistic peers are better understood when embedded inside specific classes of relativistic gravitational waves. The ambition of this Doctoral Thesis is twofold: In a first part, we discuss a generalisation of the class of gravitational waves allowing the embedding of nonrelativistic features, explore their geometric properties and the new nonrelativistic structures emerging from this study. In a second part, we advocate how the group-theoretically oriented approach of Cartan to differential geometry can shed new light on nonrelativistic structures, both in an intrinsic and ambient fashion.Bien qu’ayant vu le jour dans un cadre dit relativiste avec l’avènement de la théorie de la relativité générale, le lien intime existant entre géométrie de l’espace-temps d’une part, et gravitation d’autre part, peut se voir étendu aux théories dites nonrelativistes, l’exemple paradigmatique en étant la reformulation géométrique de la gravitation Newtonienne initiée par E. Cartan. De tels espace-temps nonrelativistes diffèrent structurellement de leurs homologues relativistes, ces disparités étant le plus naturellement expliquées en réinterprétant ces premiers comme réduction dimensionnelle d’espace-temps relativistes privilégiés. L’ambition de cette thèse est double : Dans une première partie, nous nous intéressons à une généralisation de la classe d’espace-temps relativistes permettant le formalisme ambiant, étudions leur interprétation géométrique ainsi que la classe élargie de structures nonrelativistes pouvant y être plongées. La seconde partie de ce manuscrit concerne le point de vue, informé par la théorie des groupes, que porte E. Cartan sur la géométrie différentielle et plus précisément l’éclairage que projettent les géométries de Cartan sur les structures nonrelativistes, à la fois dans leur définition intrinsèque et dans leur relation avec des structures relativistes au travers du formalisme ambiant

    Monotone Methods for Markovian Equilibrium in Dynamic Economies

    Full text link
    In this paper, we provide an overview of an emerging class of monotone map methods in analyzing distorted equilibrium in dynamic economies. In particular, we focus on proving the existence and characterization of competitive equilibrium in non-optimal versions of the optimal growth models. We suggest two alternative methods: an Euler equation method for a smooth, strongly concave environment, and a value function method for a non-smooth supermodular environment. We are able to extend this analysis to study models that allow for unbounded growth or a labor-leisure choice

    Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view

    Full text link
    The "metric" structure of nonrelativistic spacetimes consists of a one-form (the absolute clock) whose kernel is endowed with a positive-definite metric. Contrarily to the relativistic case, the metric structure and the torsion do not determine a unique Galilean (i.e. compatible) connection. This subtlety is intimately related to the fact that the timelike part of the torsion is proportional to the exterior derivative of the absolute clock. When the latter is not closed, torsionfreeness and metric-compatibility are thus mutually exclusive. We will explore generalisations of Galilean connections along the two corresponding alternative roads in a series of papers. In the present one, we focus on compatible connections and investigate the equivalence problem (i.e. the search for the necessary data allowing to uniquely determine connections) in the torsionfree and torsional cases. More precisely, we characterise the affine structure of the spaces of such connections and display the associated model vector spaces. In contrast with the relativistic case, the metric structure does not single out a privileged origin for the space of metric-compatible connections. In our construction, the role of the Levi-Civita connection is played by a whole class of privileged origins, the so-called torsional Newton-Cartan (TNC) geometries recently investigated in the literature. Finally, we discuss a generalisation of Newtonian connections to the torsional case.Comment: 79 pages, 7 figures; v2: added material on affine structure of connection space, former Section 4 postponed to 3rd paper of the serie

    Dual Massive Gravity

    Get PDF
    The linearized massive gravity in three dimensions, over any maximally symmetric background, is known to be presented in a self-dual form as a first order equation which encodes not only the massive Klein-Gordon type field equation but also the supplementary transverse-traceless conditions. We generalize this construction to higher dimensions. The appropriate dual description in d dimensions, additionally to a (non-symmetric) tensor field hμνh_{\mu\nu}, involves an extra rank-(d-1) field equivalently represented by the torsion rank-3 tensor. The symmetry condition for hμνh_{\mu\nu} arises on-shell as a consequence of the field equations. The action principle of the dual theory is formulated. The focus has been made on four dimensions. Solving one of the fields in terms of the other and putting back in the action one obtains two other equivalent formulations of the theory in which the action is quadratic in derivatives. In one of these representations the theory is formulated entirely in terms of a rank-2 non-symmetric tensor hμνh_{\mu\nu}. This quadratic theory is not identical to the Fierz-Pauli theory and contains the coupling between the symmetric and antisymmetric parts of hμνh_{\mu\nu}. Nevertheless, the only singularity in the propagator is the same as in the Fierz-Pauli theory so that only the massive spin-2 particle is propagating. In the other representation, the theory is formulated in terms of the torsion rank-3 tensor only. We analyze the conditions which follow from the field equations and show that they restrict to 5 degrees of freedom thus producing an alternative description to the massive spin-2 particle. A generalization to higher dimensions is suggested.Comment: 14 pages; v2: modifications in Appendix, more references adde

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0≤n+nˉ≤D0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D−1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte
    • …
    corecore