7 research outputs found

    Studies of the interaction of biogenic volatile organic compounds and NOx in forest environments

    Get PDF
    Ozone is a pollutant that causes crop damage, adverse health effects, and is a contributor to global climate change. Ozone concentrations are predicted to rise over the next half-century along with global temperature. Ozone production is controlled by the chemistry between biogenic volatile organic compounds and NOx (NO + NO2), and therefore, a greater understanding of NOx + BVOC chemistry along with their sources and sinks is needed. One large uncertainty in understanding NOx + BVOC chemistry is the production of organic nitrates (RONO2), which act as a radical termination step in the production of O3. In this work, we present two modified instruments built to better understand the sources of NO x and BVOCs. The result of one field campaign to identify the source of early morning NOx plumes is presented. The development of a novel sampling system for a GCxGC system is presented, along with data obtained by the instrument during a field campaign. Finally, a 0-D chemical model is used to identify the BVOC precursors most important to the formation of organic nitrates

    Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs). Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species.</p> <p>Results</p> <p>Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated particle systems.</p> <p>Conclusion</p> <p>The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine particles and the reducing nature and prolonged environmental and biological lifetimes of the EPFRs in MCP230.</p

    Highly functionalized organic nitrates in the southeast United States : Contribution to secondary organic aerosol and reactive nitrogen budgets

    Get PDF
    Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene-and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (similar to 2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.Peer reviewe
    corecore