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ABSTRACT 

McAvey, Kevin Michael. PhD., Purdue University, May 2015. Studies of the Interaction 
of Biogenic Volatile Organic Compounds and NOx in Forest Environments.  Major 
Professor: Paul B. Shepson.  
 

 Ozone is a pollutant that causes crop damage, adverse health effects, and is a 

contributor to global climate change. Ozone concentrations are predicted to rise over the 

next half-century along with global temperature. Ozone production is controlled by the 

chemistry between biogenic volatile organic compounds and NOx (NO + NO2), and 

therefore, a greater understanding of NOx + BVOC chemistry along with their sources 

and sinks is needed. One large uncertainty in understanding NOx + BVOC chemistry is 

the production of organic nitrates (RONO2), which act as a radical termination step in the 

production of O3. In this work, we present two modified instruments built to better 

understand the sources of NOx and BVOCs. The result of one field campaign to identify 

the source of early morning NOx plumes is presented. The development of a novel 

sampling system for a GCxGC system is presented, along with data obtained by the 

instrument during a field campaign. Finally, a 0-D chemical model is used to identify the 

BVOC precursors most important to the formation of organic nitrates.  
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CHAPTER 1 INTRODUCTION 
 

 
 

1.1 Tropospheric Chemistry 

High ground level ozone (O3) concentrations and photochemical oxidants have 

become a worldwide concern due to the impacts on human health, with thousands of 

studies showing impacts such as decreased vital capacity (Koren et al., 1989), enhanced 

response to inhaled allergen (Ball et al., 1999), inflammation (Nightingale et al., 1999), 

and irreversible changes in lung structure (Dockery et al., 1996; Gauderman et al., 2000; 

Raizenne et al., 1996). High ozone concentrations are also of concern due to their role in 

global climate change (IPCC, 2007) crop loss (Tang et al., 2013), and forest damage (de 

Vries et al., 2014). Measurements of O3 during the nineteenth century suggest that pre-

industrial ground level O3 concentrations were less than 10 ppb (Volz and Kley, 1988). 

During the past century, background concentrations of ground level ozone have 

quadrupled, and O3 could rise another 40-60% by 2100 if current emission trends 

continue (Isaksen et al., 2009; Meehl et al., 2007). 

The troposphere is the lowest portion of the atmosphere and extends from the 

Earth’s surface to a height of 7 to 20 km above sea level (Finlayson-Pitts and Pitts, 2000). 

The troposphere is oxidative due to the presence of OH radicals, O3, and NO3 radicals. 

Ozone controls the oxidizing capacity of the atmosphere through the formation of OH 

and NO3 radicals (discussed below), which react rapidly with nearly all volatile organic 
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compounds (VOCs) and many inorganic compounds. They serve as the mechanism by 

which the atmosphere “cleans” itself.  Through oxidation, O3, OH radicals, and NO3 

radicals, are able to effectively remove VOCs from the atmosphere by oxidizing VOCs 

leading either to the production of carbon dioxide or products with lower vapor pressures 

and/or more highly water soluble species (Finlayson-Pitts and Pitts, 2000; Goldstein and 

Galbally, 2007). These lower vapor pressure- higher water solubility species are then 

removed from the atmosphere through dry deposition, wet deposition, or uptake into 

aerosol (Goldstein and Galbally, 2007). Aerosols are then removed from the atmosphere 

through dry or wet deposition.  

Ozone is produced and controlled in the atmosphere by the chemistry that occurs 

between NOx (NO2 + NO) and VOCs. Through the chemistry occurring between NOx, 

VOCs, and O3, atmospheric smog that pollutes many urban regions is formed (Haagen-

Smit, 1952). The following sections of this chapter will go into further depth on the 

sources, sinks, and chemistry of the key components that control the oxidative capacity of 

the troposphere. 

Current research in the field of tropospheric chemistry has shown that a 

substantial fraction of VOCs have rarely been directly measured and that a review of the 

global budget for VOCs shows that we cannot account for the loss of approximately half 

of the non-methane VOCs entering the atmosphere (Goldstein and Galbally, 2007). 

Computer modeling, chamber experiments, and large scale field campaigns have been the 

general means of identifying and evaluating the knowledge of NOx and VOC chemistry. 

There have been many advances in the past few years in the understanding of 

tropospheric chemistry, including better branching ratio predictions for important 
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reactions and the ability to quantify various VOCs. This review will attempt to explain 

the greater understanding of the fate of NOx through interactions with the process of 

VOC oxidation, including which individual VOCs contribute most to ozone production 

and organic nitrate production, and what is currently unknown about NOx chemistry and 

the effects of regulation on the concentration of oxidants and the changes in chemistry 

occurring in the troposphere.  

 

1.2 Boundary Layer Meteorology and its Effect on NOx Chemistry 

A large factor in understanding NOx-BVOC chemistry is understanding boundary 

layer dynamics. In a traditional laboratory, samples can be contained within glassware 

and have fixed volumes and mixing speeds. In the atmosphere, there are a multitude of 

factors affecting the mixing and associated concentration of species.  

The atmosphere is separated into four distinct layers based on their temperature 

lapse rate; the troposphere, the stratosphere, the mesosphere, and the thermosphere. 

Figure 1.1 shows the location and approximate heights of each layer. 
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Figure 1.1 Structure of the atmosphere along with temperature and pressure profile. 
Finlayson-Pitts and Pitts, (2000). 
 
 
 
Within the lowest layer, the troposphere, exists the boundary layer. The boundary layer is 

defined as the fraction of the Earth’s atmosphere that is directly influenced by the 

presence of the Earth’s surface, and responds to surface forcings with a timescale of 
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about an hour or less (Stull, 1988). BVOCs come from vegetation, and are therefore 

directly connected and influenced by the dynamics of the boundary layer (Guenther et al., 

2000; Guenther et al., 1993). NOx in the troposphere comes from surface emissions such 

as the burning of fossil fuels, biomass burning, and soil emissions, and the transport of 

these emissions are highly dependent on the structure and motion occurring within the 

boundary layer (Oliver et al., 1996).  

Within the boundary layer, there exists turbulence, or gustiness superimposed on 

the mean wind, and is visualized as irregular swirls of motion called eddies (Stull, 1988). 

These eddies are generally created by surface forcings in the boundary layer. Examples of 

such forcings include solar heating and buoyancy, and wind shear. Solar heating occurs 

when solar radiation heats the ground faster than the air above it, causing buoyant warm 

air at the surface to rise, and the pressure difference from the warm air rising causes cool 

air from the top of the boundary layer to move towards the surface. Another forcing is 

wind shear. Wind shear is when two layers of air with different mean wind direction 

meet, and usually induce turbulence (Stull, 1988). These two forcings have an enormous 

impact on the mixing that occurs within the boundary layer, and therefore influence NOx-

BVOC chemistry. 

 The development of the boundary layer is shown in Figure 1.2.  
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Figure 1.2. Idealized diurnal structure of the boundary layer (Stull, 1988). 

 

There are four major areas to the development of the boundary layer. The first is the well 

mixed convective layer. The mixed convective layer begins in the morning at sun rise and 

continues as long as there is solar forcings. Due to solar forcings, the air in the mixed 

layer is very turbulent and well mixed. When the sunsets, the ground cools faster than the 

air above and it, ending the large turbulent mixing within the mixed layer, and creating a 

stable, poorly mixed surface layer. The cool air at the surface creates the second major 

component, the nocturnal boundary layer. This layer experiences only sporadic 

turbulence. When solar forcing stops, a residual layer is formed on top of the nocturnal 

boundary layer, and this layer contains the remaining emissions from the previous day in 

a layer that is less turbulent than the mixed layer. When the sun rises again in the 

morning, the solar forcing returns, and the daytime mixed nocturnal boundary layer 

begins to mix with the residual layer, creating the convective mixed layer. The fourth 
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area that effects the development of the boundary layer is the entrainment zone. 

Entrainment is when a turbulent flow mixes with a non-turbulent flow (Stull, 1988).  

 One of the main difficulties in understanding boundary layer dynamics is the 

understanding of turbulence. The scope and scale of describing the equations that 

represent turbulent flow is beyond this review. Detailed equations that represent 

turbulence can be found in Stull (1988). One of the largest problems with understanding 

turbulence is the closure problem. The closure problem is stated as the number of 

unknowns in the sets of equations that describe turbulent flow is larger than the number 

of equations, and therefore, the total statistical description of turbulence requires an 

infinite set of equations (Stull 1988). The most common way to solve this problem is to 

use K-theory, shown in equation 1.1 where K is referred to as the eddy diffusivity, uj is 

the wind speed for j dimensions, ξ is any variable (momentum, heat, moisture, etc…), 

is the flux of ξ, and  is the gradient of ξ. 

 
 
K-theory is a first order closure in which a scalar value of K (m2s-1) is used to 

approximate the second and further moments that describe turbulent flow (Stull, 1988). 

This theory is extensively used because it is computationally inexpensive (Forkel et al., 

2006), but frequently fails when larger-size eddies are present (Stull, 1988), and when 

heterogeneous surfaces are present (Bryan et al., 2012). K-theory is very problematic for 

forest environments because the eddy diffusivity constant used for the mixed convective 

layer (e.g. at 500 m in daytime) is 2 orders of magnitude higher than at the forest canopy 

surface layer (Gao et al., 1993) and therefore when used near the canopy surface breaks 
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down completely due to frictional related changes due to the heterogeneous surfaces of 

the canopy (Raupach et al., 1996). Therefore, most models have large uncertainties in 

describing vertical mixing within and above the canopy and poorly describe atmosphere-

forest exchanges of NOx, BVOCs and oxidants (Ganzeveld et al., 2006; Saylor, 2013; 

Wolfe and Thornton, 2011). 

 

1.3 NOx 

Emissions of NOx have a wide range of atmospheric implications including 

stimulated forest growth (Costa et al., 2011), growth of secondary organic aerosol (Xu et 

al., 2014) and controlling ozone production in the troposphere (Ridley et al., 1992a).  

Since the first trace level measurements of NO by (Fontijn et al., 1970), measurements of 

NOx have been a vital part of understanding the chemical processes that govern the 

composition and quality of tropospheric air. NOx can directly and indirectly control the 

major oxidants in the atmosphere and controls VOC oxidation pathways (Lin et al., 1988; 

Thompson, 1992). 

Nitrogen dioxide photo dissociates at wavelengths less than 420 nm to produce 

NO and a ground state triplet oxygen atom, which can then react with O2 to form O3 as 

shown in reaction 1.1, 1.2, and 1.3. This reaction is critical in atmospheric chemistry as 

NOx emissions are the only significant anthropogenic source of O3 in the troposphere 

(Finlayson-Pitts and Pitts, 2000). From reactions 1.1, 1.2, and 1.3, the overall net of these 

reactions is nothing and the only way O3 is produced is by reactions which convert NO 

into NO2 without destroying O3 (discussed within) (Thornton et al. 2002). 
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 Over the contiguous United States the primary source of NOx is fossil fuel 

burning (7.3 Tg N yr-1), followed by soil emissions (0.5 Tg N yr-1), lightning (0.4 Tg N 

yr-1), and from incomplete combustion in biomass burning (0.3 Tg N yr-1) (Oliver et al., 

1996). There still remains a large uncertainty in the magnitude of emissions from various 

sources. From satellite measurements, estimated global soil NOx emission measurements 

vary from 7 (Yan et al., 2005)  to 21 Tg N yr-1 (Davidson and Kingerlee, 1997). There are 

limited measurements of soil fluxes, canopy fluxes, and lightning induced NOx, due to 

the difficulty in obtaining these measurements (Geddes and Murphy, 2014). While there 

are a large number of experiments exploring the interactions between NOx and BVOCs, 

there remains a large uncertainty in the formation of oxidized BVOCs and their role in 

the sequestration of NOx, partly due to the vast number of BVOCs and partly due to the 

complexity of reaction products from these reactions. The role of NOx in BVOC 

oxidation is discussed within.  

 

1.4 Biogenic Volatile Organic Compounds 

A wide variety of non-methane hydrocarbons are emitted into the atmosphere 

from either anthropogenic sources or biogenic sources, with emission inventories 

showing that biogenic volatile organic compounds (BVOCs) exceed anthropogenic 

emissions by an order of magnitude worldwide and by a factor of 1.5 for the United 

States (Guenther et al., 2000; Guenther et al., 1995). BVOCs are generally categorized as 
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isoprene (C5H8), monoterpenes (C10H16), sesquiterpenes (C15H24), diterpenes (C20H32),  

non-terpenoids (which include oxygenated terpenes such as 2-methyl-3-buten-2-ol 

(MBO)), other species (such as hexene derivatives), and short chain oxygenated 

hydrocarbons, such as methanol and acetone (Seco et al., 2007). Figure 1.3 shows the 

structure of some common BVOCs measured in the atmosphere. 
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Figure 1.3 Commonly observed BVOCs and their structure. 
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Global BVOC emissions are estimated to be 1150 Tg C yr-1, with isoprene being 

the dominant BVOC, with an estimated 500 Tg C yr-1 emitted each year. In the United 

States, BVOC emissions are estimated to be 84 Tg C yr-1, of which 30% is isoprene, 25% 

are monoterpenes and sesquiterpenes, and 45% are non-terpenoid compounds (Guenther 

et al., 1995). Atmospheric samples can contain thousands, if not millions, of possible 

VOCs. Goldstein and Gallaby (2007) have estimated that there can be well over 1 million 

possible 10 carbon organic compounds, with 100 alkane isomers alone. When searching 

the Beilstein preparative organic chemistry database for compounds with boiling points 

below 300°C and less than 11 carbons, only 791 known compounds are found, showing 

the lack of understanding of the complexity of atmospheric samples (Goldstein and 

Galbally, 2007). The complexity of samples is also increased due to oxidation processes 

occurring in the atmosphere. The ozonolysis of a single BVOC, longifolene, was shown 

to create over 200 identifiable oxidation products by comprehensive two-dimensional gas 

chromatography (Isaacman et al., 2011), and that is a small fraction of the potential 

products generated by comprehensive models (Aumont et al., 2005). 

BVOC emissions are generally temperature and radiation dependent (Guenther et al., 

1993). The composition of the biosphere determines which BVOCs are emitted. The 

forests of northern Michigan and in the southeastern United States have been found to be 

largely isoprene emitters (Carroll et al., 2001). The ponderosa forests of the western 

United States are dominated by MBO and monoterpene emissions (Kim et al., 2010). The 

forests outside of Nashville, Tennessee have been shown to be large isoprene emitters 

(Starn et al., 1998). MacKenzie et al. (2011) found distinctive VOC footprints from a 

rainforest in Borneo and a nearby palm oil plantation. Measured isoprene concentrations 
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in the rainforest were ~4 times higher than at the nearby palm oil plantation. Measured 

monoterpene concentrations in the palm oil plantation were half of that measured in the 

rainforest. Even in highly urbanized areas such as Atlanta, Georgia, the emissions of 

isoprene have been estimated to be larger than anthropogenic hydrocarbons from 

industrial processes (Lindsay et al., 1989). BVOCs are generally more reactive to OH, 

NO3, and O3 than anthropogenic VOCs (Atkinson and Arey, 2003), and hence their local 

chemistry has a much more profound effect on local and global climate (Goldstein and 

Galbally, 2007). Therefore, for the rest of this chapter will only focus of BVOCs.  

BVOCs are fundamental in the formation of secondary organic aerosol. Through 

the oxidation of BVOCs with OH, O3, and NO3, generally lower volatility products are 

formed (Hallquist et al., 2009; Kroll and Seinfeld, 2008). The reduction in vapor pressure 

from the oxidation of BVOCs can be seen in Table 1.1, which shows the general 

multiplicative factor in the change of vapor pressures of BVOCs.  
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Table 1.1 Change in vapor pressure due to the addition of functional groups. Table taken 
from Kroll and Seinfeld (2008). 

 

 

 
 
These reduced vapor pressure products are more water soluble and can uptake into or 

onto aerosol or other surfaces. The mechanisms for the oxidation of BVOCs leading to 

different functional groups are discussed within this review. 
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The importance of speciating BVOCs is apparent when measuring the secondary 

organic aerosol (SOA) yield from BVOC oxidation reactions. SOA yield is the fraction of 

the total mass of the BVOC that ends up in the aerosol phase after oxidation. SOAs are 

aerosols formed when atmospheric oxidation products of VOCs undergo gas-particle 

transfer, and will be discussed below. Lee et al. (2006b) subjected eight monoterpenes to 

oxidation by OH, and found the SOA yield to vary from 58% for limonene to 25% for α-

terpinene. Lee et al. (2006a) studied the oxidation of 6 monoterpenes by O3 and found 

that the SOA yield varied from 54% for 3-carene to 11% for myrcene. Fry et al. (2014) 

studied the SOA yield from the reaction of 11 different BVOCs with the NO3 and found 

that the SOA yield varied from 0 (α-pinene) to 86% (limonene). These SOA yields have 

been found to change with temperature, as lower temperatures generally result in higher 

SOA yields (Takekawa et al., 2003). These studies show that just isomers of C10H16 have 

vast differences not only in reactivity, but in product speciation. The oxidation pathways 

which lead to these different products are discussed below. 

It has become increasingly necessary to separate BVOCs into their individual 

isomers due to the large differences in reactivity. Table 1.2 shows the lifetimes of 

BVOCs for each oxidant.  
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Table 1.2 Atmospheric lifetimes of selected BVOCs with respect to OH, O3, and NO3. 
Table is taken from Atkinson (2003). 
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These lifetimes, calculated as the inverse of the rate constant times the concentration of 

the oxidant, were calculated assuming 2x106 molecules/cm3 of OH, 7x1011 

molecules/cm3 of O3, and 2.5x108 molecules/cm3 of NO3. Therefore, an understanding 

not only of the BVOCs, but the oxidants is needed to understanding O3 chemistry in the 

troposphere. 

 
 

1.5 Oxidants 

 

1.5.1 OH Radical 

The hydroxyl radical is a highly reactive compound with an unpaired electron and 

is formed mainly by reactions 1.4 and 1.5.  

 

When O3 is photolyzied (λ < 310 nm), a singlet state oxygen is formed. When there is 

water vapor present, the singlet state oxygen reacts with water vapor to form 2 OH 

radicals (Finlayson-Pitts and Pitts, 2000). Thus, the oxidizing potential of the troposphere 

is dependent on the availability of O3, radiation, and absolute humidity.  OH radicals can 

also be formed from the oxidation of BVOCs by O3 (discussed within), which can be a 

substantial fraction (24-62%) of OH formed during the day (Elshorbany et al., 2009; 

Heard et al., 2004). OH radicals are considered to be the most important oxidant in the 

atmosphere due to their high reactivity and production rate (Fuchs et al., 2013).  
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 Typical daytime values of OH concentrations found in the atmosphere are 

between 1-10 x 106 molecules/cm3, with tropical regions experiencing much higher 

concentrations due to the increased sunlight and water vapor (Taraborrelli et al., 2012). 

However, there is debate on the accuracy of the measurements. Mao et al. (2012) 

reported that around 50% of the OH measured is the result of internally generated OH 

radicals, possibly from the oxidation of BVOCs and that OH measurements not using a 

chemical blank would result in OH concentrations that are artificially high. 

Hydroxyl radicals initiate oxidation by adding across a carbon-carbon double 

bond, or by abstracting a hydrogen from BVOCs as shown in Figure 1.4. 
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Figure 1.4 Oxidation pathway of BVOC and OH chemistry. 
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Models have predicted that the H-abstraction pathway isn’t important in small simple 

alkenes such as ethene, but can be the initiation reaction for over 30% of larger BVOCs, 

such as monoterpenes and sesquiterpenes (Peeters et al., 2007; Peeters et al., 1999; 

Vereecken and Francisco, 2012). The alkyl radical formed from the initial OH addition or 

abstraction then reacts with O2 to form a peroxyradical. The fate of the peroxyradical is 

determined by both the carbon backbone of the species and whether the reaction is 

occurring under high NOx or low NOx conditions. The boundary between high and low 

NOx is generally accepted as around 150 ppt and is defined as the point at which a peroxy 

radical has an equal probability of reacting with NO or another RO2 (Xie et al., 2013). 

Under high NOx conditions, NO2 can add to the peroxy radical forming what is 

commonly referred to as a peroxy nitrate (RO2NO2). Peroxy nitrates are generally 

unstable at high temperatures and their stability is dependent on the carbon backbone of 

the BVOC. Peroxy nitrates are also generally light sensitive and can decompose back into 

peroxy radicals and NO2 (Finlayson-Pitts and Pitts, 2000). Parrish et al. (1993) have 

shown that on average, peroxy nitrates were 12-25% of the total NOy 

(NOy=NO+NO2+NO3+HNO3+N2O5+HONO+all other oxidized nitrogen species) at six 

rural sites in North America, and therefore provide a temporary storage for NOx that is 

capable of transporting NOx to rural and remote locations.  

In high NOx conditions peroxy radicals can react with NO that can either add to 

the peroxy radical to form an organic nitrate or abstract an oxygen from the peroxy 

radical to form an alkoxy radical and NO2. The branching ratio, or the fraction of the time 

that the organic nitrate is formed, is highly dependent on the structure of the BVOC, with 

larger species producing more organic nitrate (Arey et al., 2001). The alkoxy radical can 
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then undergo three different chain terminating steps shown in Figure 1.4. The alkoxy 

radical can undergo a hydrogen shift, forming an alcohol-alkyl radical. While this is a 

minor pathway observed in laboratory studies, it is highly important in SOA formation. 

(Ehn et al., 2014b) have shown that 1,5-hydrogen shifts can produce first generation 

extremely-low vapor pressure volatile organic compounds that are thought be essential in 

SOA formation. The second pathway is through the cleavage of the carbon-carbon bond 

adjacent to the alkoxy carbon forming a carbonyl and alkyl radical. The alkyl radical can 

then react with O2 again repeating the peroxy radical cycle. Alkoxy radicals can also 

react with oxygen, which abstracts a hydrogen atom forming HO2 and a carbonyl 

compound (Atkinson and Arey, 2003).  

Under low NOx conditions, the fate of the peroxy radical is much different. With 

very little NO or NO2 available to abstract or add to the peroxy radical, the peroxy radical 

can react with other peroxy radicals as shown in Figure 1.4. Generally, in low NOx 

conditions, RO2 reacts primarily with HO2 (Kroll et al., 2006; Presto et al., 2005). RO2-

HO2 reactions can lead to either hydroperoxide, alcohols, and/or carbonyls. In some 

cases, RO2-RO2 reactions can lead to dimers. This reaction pathway is important in the 

formation of secondary organic aerosol, as RO2 –HO2 reactions tend to lead to products 

with much lower vapor pressures (Surratt et al., 2010).  

 

1.5.2 O3 

Ozone is one of the central oxidants in the atmosphere due to its reactivity and 

abundance. The production of ozone in the troposphere is governed by the emission of 
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VOCs and their interaction with the NOx cycle (reactions 1.1, 1.2, and 1.3), as shown in 

Figure 1.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Overview of O3 production from the oxidation of BVOCs 

 

Ozone is produced by the conversion of NO into NO2 through reactions with peroxy 

radicals in the troposphere.  Due to the photolysis of NO2 into NO, the NOx cycle 

continues, but without the destruction of O3, giving a net production of O3. This process 

is described in greater detail below.  
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Due to the relatively long atmospheric lifetime of ozone (~10-14 days), there is 

net transport of O3 by diffusion from the stratosphere into the troposphere (Atkinson and 

Arey, 2003). It should be noted the production of O3 in the stratosphere, the layer of the 

atmosphere above the troposphere, is very different and will not be investigated in this 

chapter. These two sources of O3 are balanced by losses including photolysis, reaction 

with BVOCs and deposition to surfaces. Ozone measured at remote sites is typically 

around 40 ppb, while some polluted urban regions have been shown to exhibit mixing 

ratios well above 100 ppb (Oltmans and Levy, 1994). 

 The oxidation of alkenes by ozone always begins with addition across a double 

bond to form a primary ozonide as shown in Figure 1.6.  
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Figure 1.6 Oxidation pathway of O3 and BVOCs. 

 

There are two different paths upon which the primary ozonide can proceed, including 

rapidly decomposing to form a carbonyl product and a Criegee intermediate or by 

forming an epoxide. The formation of epoxides is a minor pathway (Atkinson, 2007). The 

formation of the Criegee intermediate from the primary ozonide leaves the intermediate 

with substantial internal energy that can either be stabilized by collisional energy transfer 

or dissociate into smaller species. Criegee intermediates can undergo syn-isomerization to 
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form a hydroperoxide, which can then dissociate into an OH radical and alkyl radical 

(Aschmann et al., 2002). Criegee intermediates can also undergo anti-isomerization to 

form a dioxirane functionality (Atkinson and Arey, 2003). The formation of dioxirane has 

been shown to lead to the formation of carboxylic acids, which have a profound effect on 

SOA formation and growth (O'Neal and Blumstein, 2004). Reactions of carbonyl 

compounds and water vapor with the Criegee intermediates lead to the formation of 

secondary ozonides and hydroperoxides, respectively (Atkinson and Arey, 2003). A key 

feature of the ozonolysis reaction is the cleavage of the carbon-carbon double bond, 

which can lead to products with decreased volatility (acyclic and exo-cyclic double 

bonds) or increased volatility (endo-cyclic double bonds). However the lower volatility of 

certain products can be offset by the addition of functional groups, therefore the vapor 

pressure change due to cleavage of the carbon-carbon double bond is highly dependent 

on the carbon backbone (Kroll and Seinfeld, 2008). 

 The fate of Criegee intermediates is highly uncertain. The nature of the Criegee 

intermediate, as either a bi-radical or zwitterion, was only recently determined. Model 

calculations (Nguyen et al., 2007) and laboratory studies of simple Criegee intermediates 

(Lee et al., 2012) have shown that most Criegee intermediates are most likely zwitterions. 

Chamber studies of ozonlysis reactions have shown that Criegee intermediates can react 

with water vapor to form hydroxyhydroperoxides, which could be stable or decompose to 

a carbonyl plus H2O2 or to a carboxylic acid plus H2O. However, other studies have 

shown that the presence of water vapor has no effect on the production of OH from the 

ozonolysis of BVOCs, indicating that the chemistry of Criegee intermediates is not well 

understood (Taatjes et al., 2014).  
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 There is very little research on the effect of NOx during ozonalysis reactions 

(interaction with Criegee intermediates). This is because in any attempt to study O3 and 

NOx chemistry, NO3 will be formed (discussed below), and distinguishing between O3 

and NO3 oxidation becomes difficult to differentiate. Reactions to study the effect of NOx 

on O3 chemistry would require specially filtered light that could photolyize NO2 into NO, 

NO3 into NO2, and prevent the photolysis of O3 (so that the formation of the OH radical 

does not interfere). No known chamber currently has this capability.  

 

1.5.3 The Nitrate Radical 

The nitrate radical is formed by the reaction of O3 with NO2 and is in equilibrium 

with N2O5 in the troposphere as shown in reactions 1.6 and 1.7.  

NO2 + O3 NO3 + O2 (1.6)

NO3 + NO2 N2O5 (1.7)  

Due to the large absorption cross section of NO3 in the UV (<640 nm) (Johnston et al., 

1996), it rapidly decomposes during the day and was believed to only be important 

during the night and in highly polluted regions. However, NO3 chemistry plays an 

important role in influencing daytime photochemistry (Brown and Stutz, 2012). Penkett 

et al. (1993) have shown that NO3 more efficiently removes unsaturated hydrocarbons 

from the troposphere than OH on regional scales. NO3 chemistry effects the NOx cycle, as 

(Stutz et al., 2010) have shown that up to 50% of emitted NOx throughout a 24 hour 

period in urban areas can be removed through nocturnal processing. Pratt et al. (2012) 

showed that a significant fraction (~10%) of isoprene nitrates formed during the daytime 

was a result of NO3 chemistry. NO3 dominates the oxidation of dimethyl sulfide in coastal 
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regions, affecting the sulfur cycle in marine areas, therefore having a large effect on SOA 

formation (Stark et al., 2007). Due to its high reactivity, NO3 generally has a lifetime of 

under a minute, but has been measured in the hours range at desert sites downwind of a 

polluted urban environment (Platt et al., 1984). Typical NO3 mole ratios for urban 

environments are between a 30 ppt maximum during the early evening hours and below 

the detection limit of 1 ppt for most of the day (Smith et al., 1995). For rural areas, such 

as central Alabama, NO3 concentrations rarely exceeded the 1 ppt detection limit for a 

month long campaign (unpublished data).  

The nitrate radical, similar to the OH radical, initiates the degradation of olefinic 

BVOCs by addition across a carbon-carbon double bond, followed by reaction with O2, 

to form an nitrooxy-peroxy radical. It is possible for the nitrate radical to oxidize alkanes 

and saturated alcohols, ethers, esters, and ketones by H-atom abstraction, but the rates of 

this process is too slow to be considered atmospherically relevant (Perring et al., 2013). 

However, H-atom abstraction is important for aldehydes, due to the weak H-C bond of 

the aldehyde functionality (Atkinson and Arey, 2003). The addition of either OH or NO3 

across a double bond has about the same effect on the vapor pressure of the resulting 

products (Kroll and Seinfeld, 2008).  

 

1.5.4 Cl Atom 

Chlorine atom chemistry has traditionally only believed to be important in areas 

near oceans, where there is a large source of Cl from seawater (Behnke et al., 1997; 

Erickson et al., 1999; Spicer et al., 1998). Recent observations by (Thornton et al., 2010) 

and (Mielke et al., 2011) have shown concentrations of ClNO2 of  400 ppt and 250 ppt, 
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respectively, at continental sites located over 1000 km from the nearest ocean, suggesting 

large continental sources of chlorine. Finlayson-Pitts (1989) and Behnke et al (1992) 

discovered that the heterogeneous chemistry of N2O5 leads to the formation of ClNO2, a 

daytime chlorine radical precursor and species that serves as a temporary Cl and NOx 

reservoir as shown in reactions 1.7, 1.8, and 1.9. 

 

ClNO2 is sufficiently long-lived to photodissocate into NO2 and Cl, which can accelerate 

photochemical ozone production (Mielke et al., 2011).  

Chlorine chemistry is difficult to observe due to the high reactivity and low 

chlorine concentrations of near 1x105 molecules/cm3 at maximum (Spicer et al., 1998). 

While Cl atom concentrations are found in lower mixing ratios then OH radicals, they are 

more reactive (Aschmann and Atkinson, 2013), in some cases rate constants for BVOC-

Cl reactions are two orders of magnitude faster than OH (Aschmann and Atkinson, 2013; 

Spicer et al., 1998). This means that even though Cl atom concentrations are relatively 

low compared to other oxidizing species, they can significantly contribute to atmospheric 

chemistry and are significant oxidants near oceans, polluted sources, and in sea-ice 

covered regions (Liao et al., 2014). While the rates of reaction for Cl initiated oxidation 

are faster than OH initiated oxidation, Cl oxidation occurs mainly by abstraction of a H 

atom and the oxidation pathway proceeds similar to that found in Figure 1.4 (Faxon and 

Allen, 2013; Jobson et al., 1994). 



29 
 

1.6 Overview of Oxidation Pathways 

From the previous section, the oxidation pathway of the atmosphere is simplified 

in Figure 1.7. Overall, oxidation of BVOCs leads to products with lower vapor pressures 

that can either be deposited onto surfaces or absorbed into aerosols or other liquids. If the 

first generation products are not of sufficient vapor pressure or solubility to partition into 

aerosols, the first generation products can be subjected to further oxidation by O3, OH, 

NO3, or Cl and so on. Hydrocarbons in the atmosphere can be oxidized, via OH radical 

chemistry in the presence of O2, all the way to CO2 and H2O.  

 

 
 
Figure 1.7 Simplified BVOC oxidation scheme. 



30 
 

It should be noted, that at sufficiently large NO concentrations (e.g. > 100 ppt) for nearly 

every BVOC oxidized, two NO molecules are converted into NO2 (one from RO2 + 

NO  NO2 and one from HO2 + NO  NO2). From the current understanding of 

ozone production at steady state, O3 production is then expressed quantitatively by 

Equation 1.2 (Thornton et al., 2002), for daytime sunlit conditions. 

 

This production is not exactly two molecules of O3 produced, because of chain 

terminating steps in the HOx and NOx cycle. The HOx cycle is terminated when closed 

shell compounds are formed, including alcohols and dimers (Kroll and Seinfeld, 2008). 

RO2 can react with other RO2 to make an alcohol and carbonyl compound, but RO2 

primarily reacts with HO2 (Presto et al., 2005). The NOx cycle is terminated when OH 

reacts with NO2 to form HNO3, NO2 reacts with RO2 to form peroxy nitrate species, and 

when RO2 reacts with NO to form RONO2 (Thornton et al. 2002).  

 One of the most important factors in understanding the production of O3 by the 

oxidation of BVOCs is O3 production is not linearly dependent on NOx concentrations. 

Reactions 1.11 through 1.17 show the OH-BVOC chemistry dependence on NOx. 

Reactions 1.12 and 1.15 propagate the chain reaction and make O3. At higher mixing 

ratios of NOx, the reaction between NO2 and OH forming HNO3 (reaction 1.17) becomes 

prominent and sequesters the formation O3 by limiting the amount of OH that reacts with 

BVOCs (Perring et al., 2013; Ridley et al., 1992a; Thornton et al., 2002). At low 

concentrations of NOx, the chain is terminated by the formation of peroxides and alcohols 

(reaction 1.16). 
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R + OH ROO

ROO + NO

ROO + NO

O2

RONO2

RO + NO2

RO products + HO2

(1.11)

(1.12)

(1.13)

(1.14)

OH + NO2 HNO3 (1.17)

HO2 + NO (1.15)

RO2 + HO2 products (1.16)

OH + NO2

O2

 

A visual representation of this phenomena can be seen in Figure 1.8.  

 

 

Figure 1.8 Isopleth showing the non-linear dependence of O3 formation on NOx and VOC 
emissions. Figure taken from Dodge (1977). 
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As shown in Figure 1.8, there are conditions that can lead to increase O3 production by 

lowering NOx concentrations. A key factor in understanding tropospheric chemistry is 

knowing the chain terminating steps in BVOC oxidation, including organic nitrate 

formation.  

 

1.7 Organic Nitrate formation and Effects on Tropospheric Chemistry 

Understanding the formation of organic nitrates (RONO2) is critical to 

understanding tropospheric chemistry.  Measurements of total RONO2 have shown that 

RONO2 is a large portion of NOy in rural environments (Beaver et al., 2012; Murphy et 

al., 2006). However, the reactions and production of organic nitrates along with their 

effect on the composition of the atmosphere is poorly understood (Mao et al., 2013; 

Sommariva et al., 2011; Thornberry et al., 2001). One pressing question that is still 

unanswered is the long term fates of organic nitrates and whether they are a temporary 

storage of NOx or if they release some fraction of NOx during second or subsequent 

generation oxidation processes (Lockwood et al., 2010; Mao et al., 2013; Paulot et al., 

2009). 

Due to isoprene being the dominant BVOC emission, there has been much 

research in the area the effect of isoprene chemistry and the production of isoprene 

nitrates on local and regional tropospheric chemistry (Beaver et al., 2012; Ito et al., 2007; 

Mao et al., 2013; Paulot et al., 2012; von Kuhlmann et al., 2004; Weaver et al., 2009; Wu 

et al., 2007; Xie et al., 2013). By adjusting the yield of isoprene nitrates from 4% to 12%, 

Wu et al. (2007) modeled a 10% decrease in worldwide O3 concentrations. There are 

large uncertainties in isoprene + NO3 chemistry as isoprene is an important sink for NO3 
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(Brown et al., 2009; Hurst et al., 2001; Starn et al., 1998).  Studies have shown that NO3 

reaction only accounts for 6-7% of isoprene oxidation (Horowitz et al., 2007), but the 

reaction can contribute to 30-60% of the total isoprene nitrate mixing ratio in the eastern 

United States (Paulot et al., 2012; von Kuhlmann et al., 2004). Pratt et al. (2012) found 

that isoprene + NO3 chemistry contributed to ~9% of isoprene nitrates during the day and 

~42% at night in a mixed forest in northern Michigan. There is uncertainty regarding the 

fate of isoprene nitrates as Ito et al. (2007) and Perring et al. (2009a) estimated that the 

fate of isoprene nitrates is dominated by losses when oxidized by OH and O3 while 

Giacopelli et al. (2005) and Horowitz et al. (2007) have concluded deposition is the 

primary sink. Ng et al. (2008) have shown that the NO3 + isoprene reaction leads to di-

nitrates and oligomers that could be important in SOA formation, and a significant 

pathway for the removal of NOx from the troposphere. 

 While there has been considerable research into isoprene nitrates, there have been 

few studies on the production or impact of monoterpene nitrates and other BVOC nitrate 

species (Browne et al., 2014; Pratt et al., 2012; Rindelaub et al., 2015). There has also 

been very little insight into the specific reactions or pathways that lead to organic nitrate 

production (Paulot et al., 2009). Arey et al. (2001) have shown that in general, larger 

species have larger organic nitrate yields. Understanding these reactions is also critical in 

understanding secondary organic aerosol production, as organic nitrates are believed to 

be SOA precursors (Hallquist et al., 2009; Ng et al., 2008; Rindelaub et al., 2015) and 

therefore could have a significant effect on global climate change.  

 

 



34 
 

1.8 Importance of NOx-BVOC Chemistry in Global Climate Change 

Understanding BVOC oxidation is critical to understanding the future of global 

climate change. As previously described above, the oxidation of BVOCs generally leads 

to compounds with lower vapor pressures and are higher water solubility. These species 

are then able to form secondary organic aerosol (SOA). SOA accounts for a significant 

fraction of ambient tropospheric aerosol (Hallquist et al., 2009). SOA, like primary 

aerosols (aerosols directly emitted into the atmosphere, including wind-blown dust, 

particles from volcanic eruptions, particles from biomass burning, etc…), scatter and 

absorb radiation, participate in heterogeneous chemical reactions, influence cloud 

formation (Hallquist et al., 2009), and therefore have a central role in climate change 

(IPCC, 2007).  As previously stated, BVOCs are temperature dependent (Guenther et al., 

1993), and as global temperatures rise, so will BVOC emissions, along with SOA (Heald 

et al., 2008). Ambient aerosols have been shown to have damaging effects on respiratory 

and cardiovascular systems (Davidson et al., 2005; Harrison and Yin, 2000; Pope III and 

Dockery, 2006). The magnitude of these effects remains highly uncertain due to a lack of 

understanding of the sources, properties, mechanisms of formation, and composition of 

aerosols. There is also a significant gap in identifying the quantity of SOA in the 

atmosphere as bottom-up estimates of total biogenic SOA give fluxes of 12-70 Tg/yr 

while top-down estimates have the rate at 140-910 TgC/yr(Goldstein and Galbally, 

2007).  
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1.8.1 Organic Nitrates and their Role in SOA Formation 

While there has been considerable research leading to a better understanding of 

the processes that govern SOA formation, there is still not a quantitative and predicative 

understanding of SOA formation (Hallquist et al., 2009). There have been multiple 

studies showing the dependence of aerosol formation on NOx and BVOC concentrations 

(Ng et al., 2007; Presto et al., 2005; Pye et al., 2010; Xu et al., 2014). Ng et al. (2007) 

have shown that under high-NOx conditions, monoterpene and sesquiterpene SOA yields 

are higher and this is either a result of increased H-shift reactions described above, or due 

to higher organic nitrate yields found with bigger BVOC species (Arey et al., 2001). Ng 

et al. (2008) have found that in high NOx conditions, isoprene nitrates could lead to di-

nitrate and oligomer formation, and increase the isoprene SOA yield significantly. Pye et 

al. (2010) found that the fast reaction of monoterpenes with NO3 is a major contributor to 

surface level aerosol concentrations in anthropogenically influenced areas. Organic 

nitrates have been observed in ambient aerosol, and the fraction of total organic nitrate in 

aerosol showed an equilibrium-like response to temperature cycles, suggesting some 

reversible absorptive partitioning (Fry et al., 2013).  

 

1.9 Instrumentation for Atmospheric Chemistry Research 

Current atmospheric chemistry research is focused on reactive trace gases and 

particles relevant to climate and air quality. One of the main challenges of studying 

atmospheric chemistry is developing instrumentation to observe reactions that occur on 

time scales of less than a second when the concentrations of trace species are generally in 

the ppb to ppt range (Farmer and Jimenez, 2010). To fully elucidate a clear understanding 
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of sources, sinks, mixing ratios, reaction rates, and products, appropriate instrumentation 

has to be developed. To make atmospherically relevant measurements, instrumentation 

has to meet certain criteria, including; 

1. Rapid time resolution (greater than 1 Hz sampling frequency, (Nguyen et al., 

2015)) 

2. Portability 

3. Ease of Calibration 

4. Stability with respect to pressure and temperature fluctuations 

5. Minimal inlet design 

6. Lack of interfering species and sampling artifacts 

7. Limit of detection below atmospherically relevant concentrations 

The current understanding of atmospheric chemistry is limited by the analytical 

techniques currently available and by a lack of certified standards of atmospherically 

relevant species (organic nitrates, organosulfates, radical species, etc.). While each of 

these techniques has its strong points, all of them suffer from limitations and therefore the 

need for overall improvement would help elucidate the role of NOx in atmospheric 

chemistry. 

 

1.9.1 O3, NOx, and NOy 

Ozone was first measured in the atmosphere by embedding a paper strip with KI 

and starch which when exposed to ozone changed violet and the intensity of the color 

change was used to determine O3 concentrations (Schoenbein, 1840). O3 has been 

measured by adding excess NO into a reaction chamber, and reacting ambient O3 with the 
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NO to form excited state NO2, which then returns to ground state, releasing a photons in 

the near infrared region which can be measured by a photomultiplier tube (Walega et al., 

1991). Reactions 1.18 and 1.19 show the process.  

 

The most common method for the detection of ozone is by ultra-violet absorption at 254 

nm. In commercial instruments, O3 is detected in a flow cell by measuring the absorption 

at 254 nm. In another similar cell, the sampled air is scrubbed of O3 by Hopcalite, a 

mixture of copper and manganese oxides to give a blank signal.   However this method is 

subject to interferences from compounds such as H2O2 and isobutyl nitrite, which also 

absorb at 254 nm and are scrubbed by Hopcalite. At ambient concentrations, this problem 

is ignored due to much higher concentrations of O3 dwarfing any interference signals.  

NO has been measured since the 1970s by the reaction of NO with O3 to form 

excited state NO2 as described above in reactions 1.18 and 1.19 (Fontijn et al., 1970). The 

first method to measure NOx was made by measuring NO first, then passing the sample 

across a heated (~ 350°C) molybdenum converter to convert the NO2 into NO, and the 

difference between the two signals was determined to be the signal from NO2 (Joseph and 

Spicer, 1978). While this converter is able to effectively convert ~100% of NO2 into NO, 

it is known to be subject to interferences (Navas et al., 1997). Compounds such as peroxy 

nitrates, organic nitrates, ClNO2, and HNO3 are known to convert into NO in this 

converter, giving artificially high NOx concentrations (Grosjean and Harrison, 1985).  

To solve the interference problem from commercial Mo converters, new methods 

were developed to accurately measure NOx mixing ratios. The two most accurate ways 
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for measuring NOx are through the use of blue-light light-emitting diodes (LEDs) as NO2 

converters and laser-induced fluorescent spectroscopy (LIF). Blue-light LEDs originally 

used light focused at 365 nm to photolytically convert NO2 into NO followed by 

chemiluminescence detection via reaction with O3, then the difference between NO and 

NO2 divided by the converter efficiency would give the concentration of NO2 in the 

sample (Buhr, 2007). Current blue-light LEDs utilize 395 nm to photolyize NO2 into NO 

without converting HONO into NO and work done by Sadanaga et al. (2010) has shown 

the ability to convert nearly 90% of NO2 into NO. In LIF, a sample is passed through an 

incident laser of 585 nm, and the intensity of the fluorescence at 750 nm is then used to 

determine the concentration of NO2 in the sample (Thornton et al., 2000). 

 NOy is measured though either passing the sample through a heated (300°C) gold 

tube converter with a dilution of gas of carbon monoxide to reduce all odd-nitrogen 

species to NO (Bollinger et al., 1983) or through thermal dissociation to NO2 followed by 

measurement by laser-induced fluorescence (Day et al., 2002). To speciate organic 

nitrate, Day et al. (2002) used different temperature regions of 200°C, 350°C, and 600°C 

to thermally dissociate peroxy nitrates, alkyl and hydroxyalkyl nitrates, and HNO3 into 

NO2, which could then be measured by LIF. Reactions 1.20 through 1.22 show the 

process of thermal dissociation. 
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1.9.2 BVOCs 

The greatest difficulty in quantifying BVOCs is the vast number of species 

present in the atmosphere and that many of the species in the atmosphere contain similar 

structural and physical properties. As previously stated, there are well over 200 

observable oxidation products from the ozonolysis of a single sesquiterpene (Isaacman et 

al., 2011) and two-dimensional gas chromatography instruments are able to see over 500 

compounds with a wide range of polarities and volatilities in urban air samples (Lewis et 

al., 2000). A large uncertainty in understanding the effect of BVOCs on the oxidizing 

capacity of the atmosphere is the inability to speciate all compounds that impact the 

oxidative capacity of the atmosphere. Figure 1.9 shows a graph from Hallquist et al. 

(2009) showing what is needed for an ideal instrument for the detection of BVOCs, that 

is the ability to detect all organic mass with molecular identification on a fast time scale.   
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Figure 1.9 Graphical representation of current instruments with their advantages and 
limitations. Figure is taken from Hallquist et al. (2009) 

 
 
 
   Techniques such as Fourier transform spectroscopy (Rinsland et al., 1987), 

tunable diode laser spectroscopy (Anderson and Zahniser, 1991),  gas chromatography 

coupled with a FID detector, and mass spectrometry have identified hundreds of different 

BVOCs in the troposphere (Isaacman et al., 2012). However, spectroscopic techniques 

lack the ability to speciate compounds and are only able to detect organic functional 

groups. Gas chromatography is the most common method for separation of BVOCs, but 

long narrow bore columns have limited resolving power (Hamilton, 2010a, b). Lee et al. 

(2005) showed that when using proton-transfer reaction mass spectrometry (PTR-MS), 
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the total observed monoterpene concentration was 30% higher than observed by pre-

concentration followed by GC separation, showing that methods to speciate BVOCs are 

not observing some fraction of total BVOCs. PTR-MS is a commonly used MS method 

which utilizes H3O+ to ionize BVOCs (Lindinger and Jordan, 1998) and can identify a 

multitude of BVOCs, but lacks the ability to speciate isomers (Mielke et al. 2010). 

 Comprehensive two-dimensional gas chromatography (GCxGC) provides a vastly 

improved method for the separation of BVOCs.  By coupling a secondary column to a 

primary column, through a modulator, GCxGCs have been able to obtain vastly improved 

peak capacities, with the total peak capacity equal to the arithmetic product of the two 

columns peak capacities (Liu and Phillips, 1991).  Venkatramani and Phillips (1993) 

found that by using a two separation phases, peak capacity increased from 1000 to 50000.  

Lewis et al. (2000) first showed the resolving power of non-comprehensive (the entire 

sample was not separated on the second dimension) two dimensional GC (GC-GC) 

instruments for atmospheric samples by detecting over 100 new compounds. Lewis et al. 

(2000) showed that one-dimensional GC could possibly lead to underestimating the 

organic content of the atmosphere for urban samples, and up to two-thirds of the total 

carbon mass can be undetected. Due to the resolving power of 2D-GC systems, they are 

an optimal technique for the detection of BVOCs that can survive the columns and 

separation temperatures.  

 Detection of BVOCs is generally accomplished by flame-ionization detection, 

electron-capture detection, or mass spectrometry. In a flame-ionization detector, the 

analyte is burned in a small oxy-hydrogen flame producing CH+ ions, which create a 

current that can be measured (McNair and Miller, 1998). Flame ionization detectors are 
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widely used due to their excellent limit-of-detection of near 10-11 g (~50 ppb), response to 

all hydrocarbons, excellent linearity over 6 orders of magnitude, excellent stability, and 

predictability of relative sensitivities. However, FIDs suffer from lack of structural 

information. Without an analytical standard, the identification of a peak in a FID 

chromatogram is impossible (McNair and Miller 1998).  

 Electron-capture detectors are selective detectors that have an excellent response 

to compounds with high electron affinities (Lovelock, 1961). In electron capture 

detectors, samples are detected by their ability to decrease the level of an ion current 

inside a detection cell due to lower mobility of the analyte ions in an electric field. 

Radioactive sources, such as 63Ni emit beta particles, which collide with carrier gases to 

produce more electrons, which produces a current. When the analyte elutes from the 

column, it collects the electrons, and a decrease in the current is observed, which is 

proportional to the concentration of the analyte and its electron affinity. This technique 

has excellent limits-of-detection, linearity over 4 orders of magnitude, and fair stability 

(McNair and Miller, 1998).  The main flaws in this detection method are that the detector 

does not provide a means to elucidate structural information of the analyte and the 

detector is only responsive to species that have high electron capture cross sections, such 

as organohalogens or organonitrates.  

 The most common method for the detection of BVOCs is mass spectrometry 

(MS). Mass spectrometry allows for the identification of analytes by ionizing the sample 

and separation of species by their mass-to-charge ratio. Structural information can be 

obtained from the fragmentation patterns during the ionization process or during tandem 

mass spectrometry, in which a parent ion is isolated, subjected to high energy collisions 
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that induce dissociation, and the subsequent fragments are separated by another mass 

analyzer and detected (McNair and Miller, 1998; Mielke et al., 2010).  

 To fully understand the effect of BVOC chemistry on the NOx cycle, accurate, 

precise, and fast instrumentation is need to measure organic nitrate species and BVOCs. 

Peroxy acyl nitrates are generally measured by utilizing a cooled GC followed by 

electron capture detection(Bertman et al., 1993). The use of chemical-ionization mass 

spectrometry (CIMS), which utilizes ion-molecule reactions to selectively ionize target 

molecules has become the dominant method for the fast detection of nitrogen containing 

species (Farmer and Jimenez, 2010). Different ionization agents have been used for the 

detection of various NOy components, including CF3O- (Crounse et al., 2006) and I- (Lee 

et al., 2014a) to detect organic nitrates and SiF5
- to detect HNO3 (Huey, 2007). While this 

technique is ideal in that the soft-ionization does not fragment the analytes of interest, 

without a separation method, isomer identification is not yet possible. 

 

1.10 Knowledge Gaps in our Understanding of BVOC/NOx Chemistry 

While there has been dramatic improvement in the understanding of BVOC and 

NOx chemistry and instrumentation over the past decade, there are still significant 

discrepancies between atmospheric models and measurements, indicating our lack of 

knowledge of tropospheric processes. The measured SOA concentrations found in the air 

are much higher than predicted by various models (Goldstein and Galbally, 2007). There 

are discrepancies in the global O3 concentrations, with models showing global 

tropospheric ozone production can vary from 2300 to 5300 Tg yr-1 (Wu et al., 2007). 

Measurements of isoprene and OH radicals have shown an unknown source of OH 
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recycling in the atmosphere, which may explain deviations between modeled and 

measured OH mixing ratios (Fuchs et al., 2013). These problems will push the field of 

atmospheric chemistry to develop new instrumentation, determine new chemical 

pathways, and perform unique field measurements that will further our knowledge of the 

processes which dictate global air quality. 

 

1.11 Thesis Overview 

In this thesis, I will describe the modification of a NOx chemiluminescence 

instrument to identify the source of NOx that is commonly observed in the early morning 

hours. I will describe the development, testing, study of a new sampling system for a 

comprehensive flow-modulated two-dimensional gas chromatography instrument. I will 

show modeled organic nitrate production in the southeastern United States. 
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CHAPTER 2 NEW INSIGHTS INTO THE SOURCE OF THE EARLY MORNING 
NOX PLUMES OBSERVED THROUGH MULITPLE HEIGHT AND FLUX 

MEASUREMENTS IN A NORTHERN UNITED STATES FOREST 
 
 

2.1 Introduction 

 Emissions of NOx (NO + NO2) have a wide variety of environmental and health 

impacts including stimulation of forest growth (Costa et al., 2011; Lockwood et al., 2008; 

Magnani et al., 2007; Ollinger et al., 2002), an effect (indirectly and directly) on 

atmospheric aerosol concentrations and composition (Xu et al., 2014), and controlling 

tropospheric ozone production through reactions involving hydrocarbons and OH radicals 

(Ridley et al., 1992b). NOx regulates photochemical production of tropospheric ozone, 

along with hydroxyl and peroxy radical concentrations directly and indirectly (Lin et al., 

1988; Thompson, 1992).  When nitric oxide (NO) is converted to nitrogen dioxide (NO2) 

by oxidants other than ozone, such as hydroperoxyl radicals (HO2) or organic peroxy 

radicals (RO2), a net photochemical production of ozone results (Ridley et al. 1992).  

NOx chemistry, in the presence of other species such as biogenic volatile organic 

compounds (BVOCs) (Rollins et al., 2010), NH3 (Dentener and Crutzen, 1994), and 

humidity produces nitric acid and aerosol. Thus, through connection to ozone and aerosol 

production, and through impacts on the carbon cycle, nitrogen chemistry is linked to 

changes in the climate (Hallquist et al., 2009).  Full details of NOx chemistry can be 

found in Chapter 1. 
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Global emissions of NOx were estimated to be 22.9 Tg N yr-1 in 2003 and 24.1 Tg 

N yr-1 in 2006 and global NOx emissions over land increased 9.2% globally from 2003-

2006 (Lamsal et al., 2011). Over the contiguous United States, fossil fuel burning emits 

7.3 Tg N yr-1 into the atmosphere, while smaller contributions include biomass burning 

(0.3 Tg N yr-1), soil emissions (0.5 Tg N yr-1), and lightning (0.4 Tg N yr-1) (Oliver et al., 

1996; Zhang et al., 2003).  While NOx emissions have decreased over North America in 

the past decade, global NOx emissions have increased due to increased fossil fuel usage 

in Asia (Lamsal et al., 2011).  Understanding the sources and fate of NOx and the 

distribution of odd nitrogen species is important for quantifying human impacts on both 

atmospheric composition and climate.  

  There is still a large uncertainty in the determination of the sources, sinks, and 

chemistry of NOx due to the complex chemistry and dynamics of its sources and sinks. 

The role of forested environments is one of the largest uncertainties in understanding 

global NOx emissions and fates (Fang and Mu, 2006; Min et al., 2014). Studies have 

shown that leaf surfaces can either act as a NOx source or sink, depending on whether 

ambient concentrations of NOx reach a compensation point (Conrad, 1996), which has 

been shown to range between 0.1-3 ppb (Breuninger et al., 2012; Chapparo-Suarez et al., 

2011; Raivonen et al., 2009; Sparks et al., 2001).  To account for the differences between 

observed NOx and O3 concentrations above and below forest canopies, many large scale 

models impose an ad-hoc canopy reduction factor (fraction of soil NO emissions that are 

converted to temporary or permanent reservoirs of NOx, including peroxy acetyl nitrate, 

organic nitrates, and HNO3 before they can escape out of the canopy) to force agreement 

between below and above canopy concentrations, which has been applied to many field 
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studies (Fang and Mu, 2006; Jacob and Wofsy, 1990; Min et al., 2014; Wang and 

Leuning, 1998; Yienger and Levy, 1995).  Recent work by Min et al. (2014) has shown 

that there is a measureable significant chemical in-canopy reduction factor from NOx 

emitted by microbes in the soil. There are significant gaps in the understanding of forest-

atmosphere exchange of NOx, mainly due to the lack of direct observations (Geddes and 

Murphy, 2014).  

Due to the advances in satellite technology, there are a multitude of estimated 

global soil NOx emission measurements, however they vary from 7 (Yan et al., 2005) to 

21 Tg N yr-1 (Davidson and Kingerlee, 1997). The spread in these observations represents 

the spatial heterogeneity of emissions as well as the difficulty in interpreting and 

obtaining accurate emission data. Currently, there is limited understanding of the 

biogeochemical processes that produce or consume NOx (Chapparo-Suarez et al. 2011). 

Much uncertainty remains in the chemical processing of NOx, including the formation 

and fate of organic nitrates in the boundary layer (Lockwood et al., 2010; Paulot et al., 

2009; Xie et al., 2013). To better understand the chemistry, biological, and 

meteorological phenomena controlling NOx concentrations, methods such as 

measurements at multiple heights (discussed below), flux measurements of NOy species 

(NO + NOx + HNO3 + NO3 + PAN + RONO2 + all other oxidized nitrogen species) (Min 

et al., 2012; Turnipseed et al., 2006; Wolfe et al., 2009), and the development and use of 

instrumentation for NOx flux measurements (Farmer et al., 2006; Horii et al., 2004) have 

been recently developed. 

 One phenomenon of NOx, addressed by Alaghmand et al. (2011), is the 

observation of high concentration of NOx in the early morning above the canopy, the 
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source of which was difficult to elucidate. Figure 2.1 shows a typical rise in the 

concentration of NOx on the morning of August 9th, 2012. 

 

 

Figure 2.1 Typical rise in early morning NOx mole ratios for the morning of August 9th, 
2012. 
 
 
 
These early morning plumes have since been reported by Seok et al. (2013) and (Wolfe et 

al., 2013), at the University of Michigan Biological Station (UMBS) and the Manitou 

Forest Observatory, respectively. Proposed sources of these early morning NOx maxima 

include long-range transport of polluted air masses, downward mixing of polluted air 

masses during the break-up of the nocturnal boundary layer (NBL) (See Chapter 1.2), and 
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soil and/or foliar emissions. Alaghmand et al. (2011) hypothesized that these plumes are 

most likely the result of surface and combustion emissions accumulating in the NBL 

followed by transport to the sampling site. Seok et al. (2013) have shown that morning 

NOx maxima occur after leaf fall (during the winter) and are therefore not of a foliar 

biogeochemical origin. At a rural forested site in northern Michigan, measured soil 

emissions have not been substantial enough to explain the morning NOx plume, and the 

source of the morning plumes is unlikely to be local emissions due to the lack of any 

known local pollution sources at the remote measuring site (Alaghmand et al., 2011). To 

further understand the sources of early morning NOx maxima, vertical profile and flux 

measurements were made at a remote forest site with high time resolution in order to help 

identify the major source of early morning NOx maxima.  

 

2.2 Experimental 

 A field study was conducted in the summer of 2012 at the Program for Research 

on Oxidants: Photochemistry, Emissions and Transport (PROPHET) measurement site at 

the University of Michigan Biological Station (UMBS). Figure 2.2 shows the location of 

UMBS.  
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Figure 2.2 Location of the University of Michigan Biological Station. 

 

Full details of the site can be found in Carroll et al. (2001). Briefly, the site consists of a 

31.5 m tall scaffolding tower in a rural mixed deciduous/coniferous forest in northern 

Michigan. Figure 2.3 shows the tower located within the mixed forest. 
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Figure 2.3 Photo of the PROPHET tower located at UMBS. Photo courtesy of the 
Environmental Research Institute of Michigan. 
 
 
 
 The site has a temperate climate and is dominated by aspen trees with a mix of some 

maple, oak, birch, and beech (Gough et al., 2007). The understory at this site is from 0 to 

~12 m and the crown layer (canopy layer that includes tree branches and leaves) is 

approximately 12 to 23 m (Schmid et al., 2003). 

Measurements of NOx were made at three heights during the campaign: 1.5 m, 18 

m, and 31.5 m. NOx mole ratios were concurrently measured using two instruments. First, 

flux measurements were conducted with a custom built two-channel chemiluminescent 

instrument (Air Quality Designs). This instrument measures the photons emitted when 
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ambient NO reacts with excess O3 to produce excited state NO2, which then transitions 

back to ground state, releasing a photon (λ = 600-3000 nm) as shown in reactions 2.1 and 

2.2 (Fontijn et al., 1970; Minarro et al., 2011).  

 

This instrument was operated by Jeffery Geddes, a member of Jennifer Murphy’s 

research group at the University of Toronto. NO2 conversion into NO was achieved using 

a blue LED converter using 395 nm light as shown in reaction 2.3 (Buhr, 2007). This 

instrument contained the converter in a custom detachable inlet that was placed at the top 

of the tower. All NOx flux measurements for this field campaign were made at the top of 

the tower with a sonic anemometer placed directly below the inlet. Details of the flux 

measurements can be found in Geddes and Murphy (2014).  

Another custom built single channel chemiluminescent NOx analyzer based on the 

design of Ridley and Grahek (1990) was used to measure NOx mole ratios at multiple 

heights through the use of a 4 port valve (Hamilton MVP, Reno, NV). A design 

schematic of the sampling method is shown in Figure 2.4. 
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Figure 2.4 Flow Schematic of the instrument used to measure NOx at multiple heights. 

 

 In this instrument, a four port valve was used to switch measurement heights (1.5 or 18 

m). Ambient air was drawn through the instrument to a reaction chamber where it is 

reacted with a flow of ~1.3% O3. Ambient NO in the reaction chamber was oxidized by 

O3 to an excited state NO2 which emitted a photon which was then measured with a 

photomultiplier (PMT) tube as shown in reactions 2.1 and 2.2. All flows in the instrument 

were controlled by mass flow controllers (MFCs) and the sampling flow rate was set at 1 

liter per minute.  

Similar to the flux instrument, a blue-light LED photolytic converter (Air Quality 

Design) was used to convert NO2 into NO as shown in reaction 2.3. The converter was 
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tested before, during, and after the field campaign. The NO2 conversion efficiency was 

measured using an external mixing bulb to react a standard gas of 5.17 ppm NO and a 

known flow rate of O3 creating a known amount of NO2. Figure 2.5a shows a schematic 

of this calibration method while 2.5b shows a visual representation of the NO2 conversion 

efficiency calculation. 

 

Figure 2.5 Schematic of NO2 conversion efficiency test (2.5a) and visual representation 
of data from conversion test (2.5b). 

a) 
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Figure 2.5 continued. 
 
 
 
The NO2 converter efficiency was also tested by the use of a standard tank of 4.83 ppm 

NO2. The converter efficiency was calculated as 56 ± 6%, and there was no significant 

difference between using the mixing bulb method or the standard tank. Artifact and blank 

tests were performed every 30 minutes by adding an external flow of ozone upstream of 

the reaction chamber to titrate out any ambient NO and leaving any possible unknown 

contaminants that may produce photons in the chamber. Calibrations were performed 

daily for this instrument by mixing ultra-high purity air (Airgas) with a standard of 5.17 

ppm NO (Praxair, Inc.), and the drift in sensitivity was found to be around 1% per day, as 

shown in Figure 2.6. 

b) 
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Figure 2.6 Sensitivity of the Purdue chemiluminescence instrument during the Summer of 
2012. 
 
 
 

For this instrument, two sampling lines, both 30 m long Teflon ¼ inch OD tubing, 

were connected to the instrument located at the base of the PROPHET tower and 

extended to locations outside of the laboratory. One inlet was placed within the canopy at 

18.5 m while the other was fixed approximately 1.5 m from the forest floor. Teflon filter 

holders equipped with 1 μm Teflon filters were attached to the end of the sampling lines 

to prevent particles from entering the instrument. While one inlet was sampling, the other 

was being flushed with ambient air by the use of a KNF μpump (Trenton, NJ) at a flow 

rate of 1.5 L/min.  
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To compare the two instruments, both instruments sampled from the top of the 

PROPHET tower (31.5 m) for one day. Figure 2.7 shows the measured concentrations for 

the two instruments. 

 

 

Figure 2.7 Inter-comparison of the two NOx instruments.  

 

The NOx flux instrument from the University of Toronto measured concentrations that 

were consistently a factor of 1.1 higher than the two-inlet instrument from Purdue.  As 
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both instruments used the same calibration standard, the source of error is most likely due 

to humidity corrections and another unknown source of error. 

Water vapor has long been known to be a source of interference in NOx 

chemiluminescence instruments as water vapor is known to absorb the photons emitted 

from excited state NO2 (Gerboles et al., 2003). While water vapor in the air is generally 

measured as relative humidity, the absolute humidity is more important in affecting the 

chemiluminescent signal (Gerboles et al., 2003). When the Purdue instrument was 

calibrated with UHP air that was saturated (100% relative humidity) and dry (0% relative 

humidity), the sensitivity of the instrument changed by 6%. This is consistent with 

Gerboles et al. (2013), who found an increase of absolute humidity of 14 g m-3 (100% 

relative humidity during their experiment) resulted in a signal decrease of 7%. No 

corrections for the Purdue instrument were made because of the relatively small effect 

relative humidity had on the instrument.   

Another known source of error in NOx measurements is O3 titration during 

sampling. Ozone titration occurs when ambient ozone reacts with NO in the dark 

sampling line, and due to the lack of a light source in the line, the NO steady state 

concentration is perturbed (Seok et al., 2013). The loss of light within the sampling line 

causes two shifts to occur with NOx. The conversion of NO to NO2 as shown in Reaction 

2.4 and the conversion of NO2 into NO3 as shown in Reaction 2.5. 

 

 To account for sampling line losses, O3 concentrations is used to calculate the loss of NO 

within the sampling line given the residence time and the rate constant for reaction 2.4 
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(Minarro et al., 2011; Seok et al., 2013). Seok et al. (2013) found that if the ambient 

sample had a residence time of 15 seconds within the sampling line, up to 32% of 

ambient NO was converted into NO2 by O3, depending on air sample temperature, O3 

mixing ratio, and line pressure.  Due to the long sampling lines (30 m), the residence time 

for the 2-channel instrument was 35 seconds. Assuming initial conditions of 30 ppb O3, 1 

ppb of NO2, and 50 ppt of NO, 18 ppt (36%) of NO would be converted into NO2 during 

the time the sample was in the sampling line and 0.9 ppt of NO3 would be formed.  No 

corrections were made for ozone titration in the two-inlet instrument because there were 

no O3, pressure, or temperature measurements taken at the 1.5 m and 18 m sampling 

heights and therefore no accurate corrections could be made.  

 Ozone was measured with a Model 49C Thermal Environmental Instruments 

(Boston, MA) with a precision of ± 1 ppb and accuracy of ±1%. Ozone was sampled 

from the top of the tower near the flux instrument inlet. UV radiation was measured with 

a radiometer at 1 m, 7 m, 21 m, and 32 m above the ground. 

 

2.3 Results and Discussion 

 

2.3.1 Mole Ratios of NOx and O3 

The mole ratios of NO, NO2, NOx, and O3 as a function of time at 31.5 m for a 

representative 10 day period (August 4th to August 14th) during the campaign are shown 

in Figure 2.8.  
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Figure 2.8 Diurnal pattern of NO, NO2, NOx, and O3 observed at the PROPHET tower 
site in the summer of 2012. 
 
 
 
NOx mixing ratios exhibited a diurnal pattern driven by photochemistry. NO2 had a 

median concentration of ~500 ppt, with spikes in the morning near 1000 ppt. Photolysis 

of NO2 in the morning resulted in an increase in NO mixing ratios. The concentration of 

O3 exhibited a similar pattern seen previously at this site (Thornberry et al., 2001), with 

increasing concentrations during the day, decreasing concentrations at night, and a 

dramatic drop in mixing ratios in the early morning coinciding with the increase in NOx. 

See Chapter 1.2 for full details of the effect of the development of the boundary layer on 

NOx-BVOC chemistry. 
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2.3.2 Long-term Trends in Morning NOx 

 The first step in elucidating the source of the early morning NOx is to determine if 

the source is from anthropogenic or biogenic sources. One way to determine this is to 

observe the long term trends of NOx at the site. Due to increased regulation of 

atmospheric pollutants such as NOx, anthropogenic emissions have been declining over 

North America (Lamsal et al., 2011; Russell et al., 2012). If the source of the early 

morning NOx was from a purely anthropogenic source, there should be a decline in the 

magnitude of the spike, as satellite measurements of concentrations of NOx have 

decreased over North America over the past decade by ~6% (Lamsal et al., 2011), with 

decreases of ~30% over cities and 26% over power plants (Russelll et al. 2012). Figure 

9a, b, and c show the diurnal average of NOx at UMBS for the summers of 2000, 2008, 

and 2012, respectively. NOx was measured at UMBS from July 1st to August 12th for the 

summer of 2000, June 21st to July 24th for the summer of 2008, and August 4th to August 

14th for the summer of 2012.  The peak of the early morning rise in NOx can be seen at 

~0830 in 2000 and 2012, and around 0630 for 2008.  The peak in the early morning NOx 

can be seen at ~0830 for all three years. 
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Figure 2.9 Observed concentrations of NOx during the summers of 2000 (a), 2008 (b), 
and 2012 (c). 

b) 

a) 



63 
 

 

Figures 2.9 continued. 
 
 
 
The diurnal averages show that the early morning NOx mole ratio averages have 

remained relatively similar over the 12 years shown (and average of ~1 ppb increase 

during the morning spike for all three years); suggesting the source of the early morning 

NOx is biogenic. This hypothesis is based on limited data and is refuted by Seok et al. 

(2013), who found that the rise in NOx mole ratios in the morning above the canopy 

continued into winter months, suggesting an anthropogenic source. These observations 

show that the source of the early morning NOx plume may not be due solely to an 

anthropogenic or a biogenic source. 

 

c) 
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2.3.3 Flux Measurements 

 Flux measurements of NOx and NOy were performed by Jeffrey Geddes. Full 

details of the flux measurements can be found in Geddes and Murphy (2014). Here, a 

brief explanation and summary of his measurements are described in reference to 

identifying the source of the increased mole ratios of NOx in the morning. 

 Due to the limited precision of the flux instrument, the flux measurements of NOx 

had uncertainties between 50-100%, and it was advised not to make any definitive 

conclusions based on the measurements. All measurements of early morning NOx fluxes 

were not significantly different from zero. The error of the flux measurements was so 

high, that it could not be concluded if the flux was positive (moving up from the canopy) 

or negative (towards the canopy). Night time observations were near zero or within the 

estimated instrument random variability and therefore undetectable. Fluxes in NO and 

NO2 were opposite in direction when they were able to be measured, an example of 

chemical flux divergence which is caused by vertical gradients in NO/NO2 ratios (Gao et 

al., 1993; Horri et al., 2004). When fluxes of NOx were observed, which occurred only 

during the middle of the day, they ranged from 150-450 nmoles/m2 hr. This range of 

fluxes in NOx could account for a ~0.6-2.4 ppb increase in NOx, however, this did not 

occur in the morning. Therefore, there are no NOx flux measurements that can 

conclusively help identify the source of the early morning NOx plume. 

 Alaghmand et al. (2011) reported soil fluxes of NO at 180 nmoles/m2 hr from 

measurements in the summer of 2003 and calculated that this flux could account for a 

possible 0.7 ppb increase in NOx in the morning, assuming there was no chemistry 

occurring between the sampling inlet and ground, and that the NOx emitted diffused into 
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a 40x1x1 m cube. This means that soil emissions could significantly contribute to the 

early morning NOx plumes. However, chemistry can occur after emission in below-

canopy environment that were not taken into account in the Alaghmand et al. (2011) 

calculation. As stated above, canopy reduction factors are large and have been measured 

to be nearly 25-80% (Fang and Mu, 2006; Jacob and Wofsy, 1990; Min et al., 2014; 

Wang and Leuning, 1998; Yienger and Levy, 1995). The in-canopy chemistry which 

produces organic nitrates and HNO3 (Chapter 1.7) has not been measured at UMBS, and 

therefore, no accurate calculations can be made as the impact of soil emissions on the rise 

in the early morning NOx above the canopy.  These results indicate a need for higher 

precision instrumentation for sites that are nitrogen limited (Costa et al., 2011) and 

therefore have smaller NO, NO2, and NOx fluxes. 

 

2.3.4 Wind Direction and Speed  

 To determine if the increase in early morning NOx mole ratios comes from long 

range transport, the wind direction and back trajectories of 5 days that exhibited early 

morning NOx plumes were examined. If the source of the NOx was from a consistent 

distant anthropogenic or biogenic point source that traversed over long distances to the 

site, back trajectories should show the location or direction of the source.  Figure 2.10 

shows the wind rose plots taken with a sonic anemometer located at top of the PROPHET 

tower, indicating the direction, magnitude, and probability of direction and magnitude of 

the wind, for the 5 mornings examined in which early morning NOx plumes were 

observed.  The wind direction was from the north to northwest on the mornings of August 

8th, 9th, and 12th, while winds were from the west to southwest for the mornings of August 
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13th and 14th. Wind speeds rarely reached over 5 m/s, and only after the sun had risen on 

the morning of August 9th. 

 

 

 

 

Figure 2.10 Wind rose plots for the 5 selected mornings. Winds are from 00:00 to 12:00 
on each respective day. Wind speeds are in m/s. Figure 10a represents the morning hours 
for August 8th, 2012, while b, c, d, and e represent the 9th, 12th, 13th, and 14th, 
respectively. 
 
 
 
 

a) b) 

c) 
d) 
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Figure 2.10 continued. 

 

 
Figure 2.10 shows that wind direction and speed do not appear to make a difference in 

the source or intensity of the early morning NOx peaks. 

HYSPLIT back trajectories were calculated to show the origin of the air mass that 

traversed over the site previous to the morning NOx plume.  Twelve hour HYSPLIT back 

trajectories (Draxler and Rolph, 2014a; Rolph, 2014) for the representative days show 

that the air masses that arrived at UMBS on the representative mornings begin in 

southern Ontario, the middle of Lake Superior, just south of Green Bay, Wisconsin, and 

just north of Milwaukee, Wisconsin, shown in Figure 2.11.   

e) 
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Figure 2.11 12 hour HYSPLIT back trajectories for August 8th (a), August 9th (b), August 
12th (c), August 13th (d), and August 14th (e), 2012.  
 

a)  August 8th, 2012 

b)  August 9th, 2012 
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Figure 2.11 Continued. 

d)  August 13th, 2012 

c)  August 12th, 2012 
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Figure 2.11 continued. 
 
 
 
Twelve hour HYSPLIT trajectories were chosen because NOx is generally converted into 

HNO3 or organic nitrates within 3-10 hours (Min et al. 2014), and therefore represent a 

conservatively large area. While back trajectories indicating air masses that originated 

near Green Bay (Figure 2.11d) could be polluted, there are no potential high NOx sources 

from Lake Michigan (August 14th, Figure 2.11e) or rural Canada (August 8th, August 9th, 

and August 12th, Figure 2.11a,b,and c, respectively).  This, along with correlating 

pollution tracers and other HYSPLIT back trajectories described in Alaghmand et al. 

(2011), have shown that the source of the air mass or long range transport have very little 

effect on the early morning NOx source, and therefore it seems more likely the source 

must be due to a relatively local scale process. 

 

 

e)  August 14th, 2012 
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2.3.5 Concurrent Measurements at Various Heights 

To better understand the source of the early morning NOx plume, measurements 

of the vertical profile of NOx concentration were made. If the source of the early morning 

plume is the result of downward mixing during the breakup of the NBL, the observed 

NOx at the top of the tower should increase before measurements at lower heights. If soil 

or canopy emissions are responsible, the inlets at 1.5 m or 18 m should see the increased 

NOx concentrations first. This experiment design was attempted by Seok et al. (2013), 

however, it had flaws. Seok et al. (2013) used a heated Mo catalyst to convert NO2 into 

NO, which has been shown to convert other oxidized species into NO, including organic 

nitrates, PAN, and HNO3, and therefore the data are difficult to interpret and draw 

conclusions from without knowing the exact distribution and mixing ratios of oxidized 

components of NOy (Winer et al., 1974).  Additionally, only one instrument was used to 

measure NOx,MO (NOx measured using a MO converter to account for the artificially high 

concentrations) from 6 different heights at 5 minute sampling periods. This 30 minute 

vertical profile is longer than the timescale for canopy mixing/venting (~100 seconds) 

(Kim et al., 2013; Min et al., 2014), and Bryan et al. (2012) have shown that vertical 

mixing through the canopy at this site can be underestimated by 50-70% during the 

daytime and near an order of magnitude at night. That means when the NOx source 

occurs in the morning, it takes less than 2 minutes for NOx to be mixed within the 

sampling region (0-40 m). The long sampling period employed by Seok et al. (2013) 

could under sample plume mixing, resulting in the morning NOx plume not being 

accurately identified.   
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By using two instruments, the sampling time at different altitudes are near simultaneous, 

with most (>95%) measurements above the canopy within one minute of the 

measurements in and below the canopy when both instruments were operational. 

To better understand the evolution of the early morning NOx mixing ratios, data 

for a representative day was plotted as a function of height in Figure 2.12. 

 

 
 

 

 

 

 
Figure 2.12. A typical vertical profile measurement showing the shape and concentrations 
observed on August 8th, 2012. Figure 12a shows the measured mole ratios at 1.5 meters 
while 12b and 12c show 18 and 31.5 m, respectively. 
 

a) 
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Figure 2.12 continued. 
 
 

b) 

c) 
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Figure 2.12 shows that the average concentration of NOx during the night of 

August 8th was ~350 ppt. The mixing ratio of NOx sharply increased at the 31.5 m inlet 

just after 0600, while the NOx increase for 1.5 and 18 m didn’t occur until just before 

0900. When the NOx concentration is plotted against time by itself, as shown in Figure 

2.13 for the 5 representative days, the differences between the three heights becomes 

more distinct for all 5 days.   

 

 

Figure 2.13 Evolution of NOx mixing ratios at various heights during the 2012 campaign. 
Figure 2.13a represents the morning of August 8th, while b, c, d, and e represent the 9th, 
12th, 13th, and 14th, respectively. 
 

 

 

 

a) 
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Figure 2.13 continued. 

b) 

c) 
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Figure 2.13 continued. 

d) 

e) 
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To illustrate the differences in the concentrations observed from within and below 

the canopy to above the canopy, the ratios of NOx from above the canopy (31.5 m) to 

within the canopy (18 m) and to below the canopy (1.5 m) were plotted as a function of 

time, as shown in Figure 2.14. 

 

 

 
Figure 2.14. Ratio of [NOx] at 31.5 m over [NOx] at 18 m and 1.5 m for five mornings. 
Figure 2.14a represents the morning of August 8th, 2012, while b, c, d, and e represent the 
mornings of the 9th, 12th, 13th, and 14th, respectively. 
 

 

 

 

 

 

a) 
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Figure 2.14 Continued. 

b) 

c) 
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Figure 2.14 Continued. 

d) 

e) 
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While the mixing ratios measured by the flux instrument were consistently a factor of 1.1 

higher during the comparison study as seen in Figure 2.7, the factor of 2-7 increase in 

mixing ratios above the canopy seen during the five representative days cannot be 

explained by instrument uncertainty or error alone. There is a clear increase in the NOx 

mixing ratios above the forest canopy that is not seen below the canopy. 

 The evolution of NOx mixing ratios on August 8th (Figure 2.13a) appears to be a 

clear indication of downward mixing of polluted air during the breakup of the NBL. 

Sunrise for this morning occurred at 0556, before the increase in NOx mixing ratios 

began. From Figure 2.13a, it is apparent that the concentration of NOx increased at 31.5 

m first, followed by 18 m, and then 1.5 m. This shows that air masses with higher 

concentrations of NOx from the residual layer mixed downward towards the site on the 

morning, and caused the increase in the NOx mixing ratios. This same pattern can be seen 

on the mornings of August 13th and August 14th in Figure 2.13d and Figure 2.13e, 

respectively. However, the evolution of the mixing ratios for August 9th and August 12th 

(Figures 13b and 13c) do not appear to be caused by the break-up of the NBL.  August 9th 

has a clear increase of NOx starting around 0300, which gradually increases throughout 

the rest of the early morning hours. August 12th didn’t exhibit a slow gradual increase, but 

rather a dramatic increase shortly after sunrise. There were no known tracers of pollution, 

such as CO or toluene, measured during the summer of 2012, and therefore no conclusive 

identification of pollution can be determined. 
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2.3.6 In Canopy Chemistry and the Morning NOx Maxima 

As shown in Figure 2.14a, b, d, and e there is a clear difference between NOx 

mixing ratios in the early morning hours above and below the canopy. Below canopy 

measurements in the past have indicated that the BVOCs identified in and below the 

canopy are different from the BVOCs observed in the well mixed layer above the canopy. 

This creates difficulties in identifying not only the source, but the magnitude of the rise in 

early morning NOx mixing ratios. If the below canopy sink of NOx is sufficiently great 

(through the production of organic nitrates), it could remove NO soil emissions, only to 

have the stored NOx released at higher elevations. It could also mean that if the early 

morning air mass arrived at all 3 heights quickly, there would be a delay between NOx 

concentrations observed above the canopy and below, since most of the highly reactive 

BVOC emissions would be located within the canopy (Wolfe et al., 2011).  

Examples of fast reactions occurring below the canopy include Goldstein et al. 

(2004) who found that the fast ozone deposition numbers measured were due to chemical 

losses of O3 within the canopy by reactions with a large source of reactive BVOCs, most 

likely monoterpenes or sesquiterpenes. Wolfe et al. (2013) observed a large source of 

unexplainable RO2 production occurring below the canopy. Hu et al. (2013) measured 

terpene concentrations below and above the canopy, and observed that ~80% of the 

monoterpene limonene that is emitted from vegetation does not escape the canopy due to 

its fast oxidation by O3, OH radicals, or NO3 radicals. Min et al. (2014) attributed the 

difference in NOx mixing ratios above and below the canopy to a large chemical sink of 

NOx within the forest canopy. This is a likely cause of some of the differences in NOx 

mixing ratios observed at multiple heights during this campaign.   Without BVOC or 
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other oxidant measurements at multiple heights during this study, it is impossible to 

determine if BVOC/NOx chemistry (See Chapter 1) is the reason for the mixing ratio 

differences at multiple heights during the night and early morning hours. 

 

2.3.7 0300 Increase in NOx 

August 13th (Figure 2.13d) shows a large increase in NOx that occurs in the 

middle of the night with the maximum concentration seen at 0300. A possible source of 

the 0300 peak on August 13th is likely a static parcel of air that accumulated NOx during 

the formation of the NBL, and slowly drifted across the site above the canopy. August 

14th (Figure 2.13e) also had a large concentration peak, with a near 2.5 ppb increase in 

NOx at 3:00 am. This peak can also be seen slightly on August 12th (Figure 2.13c), but 

due to instrument maintenance, the two-inlet instrument was not operational. August 9th 

(Figure 2.13b) also shows a gradual increase of NOx around 3:00 am, but rather than 

decay in magnitude after reaching some point, it grows throughout the night. A possible 

explanation for this observation is atmospheric stratification in the NBL, also called 

fanning (Gossard et al., 1985; Stull, 1988). If the NOx was emitted into the NBL, it would 

spread out into horizontally thin layers, creating regions of higher and lower 

concentration, dependent on the level of O3 and aerosol that accumulated into that layer. 

Gossard et al. (1985) observed fine-scale vertical structure in aerosols, temperature, 

humidity, and turbulence in the NBL.  The air mass above the canopy could develop its 

own unique fine vertical structure, and the increase in NOx mixing ratios observed near 

0300 am above the canopy may be due to intermittent turbulent bursting, or sporadic 
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vertical mixing events, which could push air masses with higher NOx from the residual 

layer, into the NBL.  

 

2.3.8 Relationship between Vertical Mixing and NOx Spikes 

 To determine if any of the early morning NOx plumes were due to increased 

turbulence, and therefore increased mixing in the NBL, the friction velocity at the nearby 

Ameriflux tower was calculated. Friction velocity is the measure of total vertical flux of 

horizontal momentum near the surface of the Earth, or the turbulence created by wind 

shear (Stull 1988). Friction velocity ( ) is generally measured as shown in Equation 2.1, 

where u' is the perturbation about the mean of the mean flow of wind, w' is the 

perturbation about the mean of vertical winds, and v' is the perturbation about the mean 

of the wind perpendicular to the mean flow. 

Equation 2.1 

An observed increase in friction velocity would indicate increased turbulence, and could 

indicate vertical mixing between different layers in the NBL.  Figure 2.15 shows the 

measured friction velocity at the Ameriflux tower and UV radiation measured at the 

PROPHET tower.  
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Figure 2.15 UV radiation (uv) and friction velocity ( ) measured at UMBS during the 
summer of 2012. 
 
 
 
UV data was missing from August 9th and most of August 10th. During the mornings of 

August 12th, 13th, and 14th, the increase in friction velocity ( ) is clearly correlated with 

the increase in radiation and there is very little turbulence occurring at night. Calm 

conditions in this case were determined to be anything with a u* of less than 0.35, which 

is the point when turbulence is too weak to mix the below canopy air with the above 

canopy air (Barr et al., 2013).  On August 9th there is a clear increase in the friction 

velocity observed at the Ameriflux tower, however, no increase of NOx can be seen 

above the canopy. Instead it is one of the only times that NOx mixing ratios below the 

canopy are higher than above the canopy.  This provides more evidence that the mixing 

between the canopy boundary layer is not well understood, and may indicate that 
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turbulent motion during the night may induce downward mixing of polluted air from the 

residual layer into the canopy. The presence of the increased NOx mixing ratio at 0300 

during the summer of 2012 is still not well understood.  

 

2.4 Conclusions 
 

The early morning rise in the mixing ratio of NOx at the surface does not have a 

definitive source currently. From the data presented, it appears plausible that there are 

unknown sources of pollution in northern Michigan which emit NOx into a stratified 

NBL. Three out of five days studied suggest that the increase in NOx mixing ratios at the 

canopy height in the morning are due to either polluted air from aloft traversing 

downwards or due to a large chemical sink occurring below and within the chemistry. 

The possibility of a large chemical sink of NOx within and below the forest is plausible, 

but cannot be confirmed due to a lack of BVOC measurements below, within, and above 

the canopy. The presence of NOx peaks occurring in the early morning hours (0300) 

indicates that the source of increased NOx does not originate from photochemical 

sources. Flux measurements proved to be inconclusive, as the flux of NOx at the site in 

the morning was too small to be measured even with a current state of the art instrument. 

As stated in Wolfe et al. (2011) and Geddes and Murphy (2014), there are still 

significant uncertainties in the understanding of forest-atmosphere exchanges and 

interaction. Without flux measurements of BVOCs, NOx, OH, and O3, an understanding 

of nighttime NOx chemistry and species fate will remain ambiguous. The greatest 

uncertainty in modeling these NOx concentrations arises from the lack of a 

computationally efficient alternative to K-theory (see Chapter 1.2) when predicting inner 
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canopy turbulence, sweep-ejections, and similar events (Wolfe et al. 2011). It is also 

difficult to measure the effect of nocturnal wind structure and how it effects plume 

growth (Gupta et al., 1997). The presence of intermittent turbulence in the NBL makes it 

difficult to clarify the effect of chemistry occurring below the canopy and its effect on 

NOx mixing ratios above the canopy. While models have attempted to describe the above 

canopy chemistry and transport, below the canopy differences exist in both BVOC and 

NOx mixing ratios (Ganzeveld et al., 2002; Hu et al., 2013; Saylor, 2013; Wolfe and 

Thornton, 2011). Currently there are still large uncertainties in NOx-biosphere 

interactions, and there is a need for greater understanding of canopy scale phenomena.  

Future field campaigns are needed to further identify the cause of the early 

morning NOx plumes observed above the canopy. This problem could and should be 

addressed by the use of concurrent multi-height measurements of wind speed, BVOCs, 

OH, NO3, O3, NOx, and total NOy measurements. Future field campaigns should also 

utilize aircraft based NOx instrumentation to travel upwind of the PROPHET site to help 

identify any possible unknown anthropogenic pollution sources. Finally, sounding data 

should be used to identify the structure of the NBL, and whether stratified layers of 

polluted air are present and if the breakup of these layers leads to increases in NOx mole 

ratios (Gossard et al., 1985). 
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CHAPTER 3 DEVELOPMENT OF AN AUTOMATED COMPREHENSIVE FLOW 
MODULATED TWO-DIMENSIONAL GAS CRHOMATOGRAPH (GCxGC) FOR 

THE QUANTIFICATION OF NON-METHANE HYDROCARBONS (NMHC) 
 
 
 

3.1 Introduction 

 A wide variety of non-methane hydrocarbons (NMHCs) are emitted into the 

atmosphere where they can affect ozone production (Council, 1991; Starn et al., 1998; 

Williams et al., 1997), aerosol formation, and the biogeochemical cycling of carbon 

(Guenther, 2002). The most important NMHCs are biogenic volatile organic compounds 

(BVOCs), including isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes 

(C15H24) and a wide variety of oxygenated compounds. An estimated 1150 Tg C/ yr of 

BVOCs are emitted worldwide and these emissions are an order of magnitude greater 

than anthropogenic NMHCs (Fehsenfeld et al., 1992; Guenther et al., 1995). There is a 

large uncertainty about the rate of BVOC emissions (Hewitt and Street, 1992) and the 

fate of their oxidation products including organic nitrates (Goldstein and Galbally, 2007). 

The major pathway for removal of BVOCs is through the reaction with OH radicals, O3, 

and NO3 radicals (Atkinson, 2007). 

A large uncertainty in understanding the effect of BVOCs on the oxidizing 

capacity of the atmosphere is the inability to observe and speciate all compounds. This 

complexity can be seen in identifying saturated alkanes, where alkanes with a carbon 

number of 10 have 75 different isomers and saturated alkanes with a carbon number of 20 
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have 4347 possible isomers (Adahchour et al., 2006).  Lee et al. (2005) showed that when 

using proton-transfer reaction mass spectrometry, the total observed monoterpene 

concentration was 30% greater than observed by pre-concentration followed by GC 

separation, showing that methods to speciate BVOCs do not observe some fraction of 

total BVOCs. It has become increasingly necessary to speciate and quantify BVOCs due 

to the large differences in their reactivity and aerosol production potential of isomers 

(Atkinson, 2007; Lee et al., 2006a). 

 One of the greatest problems in quantifying BVOCs is the vast number of species 

present in the atmosphere and that many of the species in the atmosphere contain similar 

structural and physical properties. Techniques such as Fourier transform spectroscopy 

(Rinsland et al., 1987), tunable diode laser spectroscopy (Anderson and Zahniser, 1991),  

gas chromatography coupled with a flame-ionization detector, and mass spectrometry 

have identified hundreds of different BVOCs in the troposphere. However, spectroscopic 

techniques lack the ability to speciate compounds and are only able to detect organic 

functional groups. Gas chromatography is the most common method for separation and 

detection of BVOCs, but even long narrow bore columns have limited resolving power 

(Hamilton, 2010a). To perform long-term observations of BVOCs, an ideal instrument 

would be able to separate and resolve key BVOC isomers along with their reaction 

products, have high sensitivity towards BVOCs, high precision with stable detector 

response factors, and the ability to fractionate BVOCs and their oxidation products into 

classes based on size and functionality. This instrument would allow for the identification 

of compounds that are the most important in the formation of SOA and in controlling the 

O3 and aerosol production potential. 
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 Comprehensive two-dimensional gas chromatography (GCxGC) provides a vastly 

improved method for the separation of BVOCs.  By coupling a secondary column to a 

primary column, through a modulator, GCxGCs have been able to obtain vastly improved 

peak capacities, with the total peak capacity equal to the arithmetic product of the two 

columns peak capacities (Liu and Phillips, 1991; Phillips and Beens, 1999). GCxGC 

instruments offer a much larger peak capacity than conventional GC methods. Peak 

capacity is used to measure the separation capability and is defined as the number of 

peaks that can be separated with a resolution of unity in a given time interval (Shen and 

Lee, 1998). Venkatramani and Phillips (1993) found that by using two separation phases, 

peak capacity increased from 1000 to 50000.  The difference between comprehensive 

two-dimensional GC (GCxGC) and heart-cut GC (GC-GC) is that in GCxGC, the entire 

sample is transferred from the primary to secondary column, and therefore every analyte 

reaches the detector at the end of the secondary column. In GC-GC, only a fraction of the 

primary eluent is transferred to the secondary column (Adahchour et al., 2006). Lewis et 

al. (2000) first showed the resolving power of heart-cut two dimensional GC (GC-GC) 

instruments for atmospheric samples by detecting over 100 new compounds. Xu et al. 

(2003) were the first to use GCxGC on atmospheric samples and measured 650 different 

compounds (S/N>100) in a single chromatogram, but were only able to identify 235 of 

those peaks. It was shown that one-dimensional GC could possibly lead to 

underestimating the organic content of the atmosphere for urban samples and up to two-

thirds of the carbon mass can be undetected. Due to the resolving power of GCxGC and 

GC-GC systems, they are an optimal technique for the detection of BVOCs that can 

survive the GC oven or ovens. Figure 3.1 shows an example of the complexity of an 
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atmospheric sample that was collected with a GCxGC instrument coupled to a time-of-

flight mass spectrometer (TOF-MS) detector from an air mass above a black spruce fire 

(Hatch et al. 2013).  

 

 

Figure 3.1 A GCxGC chromatogram of BVOCs emitted from a black spruce fire. The 
color scale is in arbitrary units, showing the intensity of the total ion chromatogram from 
the mass spectrometer. 
 
 
 
 Lewis et al. (1997) described a novel GC-GC for the separation of isoprene and 

dimethyl sulfide that implemented two separate, isothermal ovens. While their design cut 

total energy usage for aircraft measurements, they were only able to effectively separate 

high volatility compounds. Goldstein et al. (2007) built an in-situ thermal desorption 

instrument for the separation and identification of semi-volatile components in aerosols. 

Pankow et al. (2012), in an attempt to determine BVOC complexity and retention data, 

used a commercial GCxGC time-of-flight mass spectrometry system to effectively 
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separate hundreds of compounds from leaves of two tree species. Su et al. (2011) 

designed a novel heart-cut Dean’s switch (a 3 port valve that directs the primary flow to 

either a waste column or onto the secondary column) that utilized back-flushing to detect 

C3-C12 compounds. In this set up, the outflow of two secondary columns were combined 

before entering a mass spectrometer, and one of the secondary columns was back flushed 

to achieve delayed elution of heavier compounds. While a TOF-MS provides another 

dimension of separation and excellent mass accuracy, it must be tuned daily and 

experiences fluctuations in signal stability in field study environments and therefore 

requires frequent calibrations. Quadrupole and linear ion trap detectors also suffer from 

problems including the need for daily tuning, poor limit of detections (deGouw and 

Warneke, 2007), and inability to separate isomers (Mielke et al., 2010; Paulot et al., 

2009). Mass spec techniques are also more expensive then flame-ionization detectors and 

electron-capture detectors. 

Recent attempts at a more functional GCxGC instrument have been made using 

comprehensive flow-switching modulators, an ideal long term modulator due to the lack 

of cryogens needed. Tranchida et al. (2013) first attempted to create a GCxGC-qMS 

system, but found that nearly 80% of the primary flow needed to be diverted from the 

modulator and the sensitivity in the GCxGC system was 3-4 times lower than found in 

conventional GC-MS. Ghosh et al. (2013) attempted to use a traditional Dean’s switch as 

part of the GC-GC-MS system, but found that the system suffered from a low duty cycle 

of 0.1. Edwards et al. (2013) made a miniaturized GCxGC system with a modified low-

cost photo-ionization detector, but were only able to measure parts per billion level 

concentrations. In the work presented below, we attempt to develop an ideal instrument 
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(sub-ppt detection limits, detection of compounds from C5 to C15, and ability to separate 

and quantify compounds with nitrate ester bonds) for the separation and detection of the 

wide range of BVOCs found in chamber experiments and in ambient samples.  

 

3.2 Experimental 

 

3.2.1 Calibration System 

 To conduct quantitative measurements, a calibration system is necessary. For this, 

we developed a diffusion based calibration system shown in Figure 3.2. This system is 

based on the system described by Gautrois and Koppmann (1999), where seven 

compounds, i.e. isoprene, toluene, isobutyl nitrate, α-pinene, 2-ethyl-hexyl nitrate, 

decane, and trans-caryophyellene, were selected to represent a wide volatility range of 

BVOCs.   

 

 

Figure 3.2 Schematic of the calibration system. 
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The diffusion rate for the standards was determined using Equation 3.1 (Altshuller 

and Cohen, 1960). Diffusion coefficients were determined from Equation 3.2 (Tucker and 

Nelken, 1990). Previously determined vapor pressures for isobutyl nitrate, 2-ethyl hexyl 

nitrate, and trans-caryophyellene were not available so they were calculated using 

Equation 3.3 (Grain, 1990). Heats of vaporization for isobutyl nitrate, 2-ethyl hexyl 

nitrate, and trans-caryophyllene were determined according to Equation 3.4 (Fishtine, 

1963).  

      Equation 3.1 

    Equation 3.2 

     Equation 3.3 

    Equation 3.4 

       Equation 3.5 

In Equations 3.1-3.5, r is the rate of diffusion (g/s), D is the diffusion coefficient 

(m2/s), Mr is the reduced mass, P is atmospheric pressure (1 atm), p is the saturation 

vapor pressure (atm) in atmospheres at temperature T (K), L is the length of the diffusion 

tube (cm), T is 323 K for all compounds except isoprene, where T = 278 K, A is the area 

of the diffusion tube (cm2), Va and Vb are molar volumes for the gas in question and 

nitrogen, H is heat of vaporization, Z is 0.97, C2 is an estimated constant found using 

Equation 3.5, also known as Thompson’s Rule (Thomson, 1959), Tb is the boiling point 

temperature (K) at STP, and R is the ideal gas constant. 
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The internal diameters of the diffusion capillaries were calculated so that each 

capillary had a diameter between 0.152 to ~2 mm and a length of 5 cm, not including the 

bulb diameter. Table 3.1 lists the calculated inner diameters needed to produce a  

3.8 x 10-9 gram per second diffusion rate and the actual inner diameter used. 

 

Table 3.1 Dimensions of diffusion tubes 

Compound Calculated I.D. 

(mm) 

Actual I.D. 

(mm) 

Bulb Diameter 

(mm) 

Length 

(mm) 

Isoprene 0.160 0.152 10.28 60.45 

Trans-

caryophyllene 

4.340 5.00 10.17 59.20 

toluene 0.230 0.229 10.29 60.04 

Isobutyl nitrate 0.290 0.305 10.17 60.45 

Decane 0.750 0.75-1.25 10.18 60.43 

2-ethyl-hexyl 

nitrate 

1.800 1.75-2.25 10.24 62.54 

α-pinene 0.510 0.508 10.17 60.06 

 

 

 Actual inner diameters were chosen due to the limited availability of calculated inner 

diameter tubing. Outer diameters of the tubing ranged from 0.55 to 0.74 cm. The seven 

diffusion vials were created by blowing an approximately 1 mL bulb into the bottom a 

piece of defined ID tubing. For the vials in which needles were too large to inject a 

standard, a small Teflon cap with a reservoir was sealed to the top of the diffusion vial 
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with an o-ring and the bottom of the vial was submerged in liquid nitrogen. The 

temperature change created a relative vacuum which pulled the liquid standard into the 

diffusion vial. 

 Due to the high vapor pressure of isoprene, a special block with Peltier plates had 

to be made to cool the isoprene vial to 5° C. The other standards were heated to 50° C 

with cartridge heaters inserted into the block. The seven diffusion tubes were inserted to a 

silanized stainless steel block (Kreuger and McCloskey, 1969) so that the ends of the 

diffusion tubes were situated just inside the 9.525 mm diameter bore through the block. 

The diffusion vials were compressed between the stainless steel block and a steel plate, 

and sealed with Viton o-rings (McMaster Carr, Elmhurst, IL) to create an air-tight 

connection. The silanized stainless steel block was heated to 100°C.  To minimize 

possible oxidation reactions with the trans-caryophyellene (Helmig et al., 2003) and to 

flush the components into dilution air, ultra-high purity nitrogen was constantly passed 

over the diffusion vials at a flow rate of 100 sccm. The system was leak checked daily to 

ensure minimal oxygen was present.  

To determine the diffusion rate of the standards in the calibration system, the 

mass loss rates of the seven standards was determined by measuring the mass of the 

diffusion vials on a weekly or bi-weekly basis. The vials were filled and allowed to 

diffuse till empty or near empty three different times. Cleaning occurred in-between each 

filling by flushing the vials with acetone and nano-pure water. For the first fill, the 

diffusion vials were inserted into a Teflon block heated to 100° C. This differs from 

Figure 3.2, which shows 120° C. It was determined from blank and calibration samples 

that the Teflon block in which the heads of the diffusion vials were inserted was emitting 
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contaminants. The Teflon block also suffered from near severe deformation at 100° C.  

For the second and third configurations, the Teflon block was replaced with a stainless 

steel block that was heated to 120° C. 

Attempts to create calibration curves from the direct mixing of the 100 sccm 

calibration diffusion source with a 1000 to 10000 sccm dilution flow of ultra-high purity 

air was unsuccessful. The 100 sccm flow from the calibration system could not 

thoroughly mix in small (100-1000 mL) mixing chambers that could fit inside the 

sampling system oven.  To create calibration curves, ~100 L Teflon bags were connected 

to the sampling system for various time periods to create multi-point calibration curves. 

The bags were filled with ~80 L of air. All MFCs used were calibrated by bubble meters. 

Uncertainties from this calibration method are described within. 

 

3.2.2 Sampler 

 To create a sampler for a comprehensive flow modulated GCxGC, certain criteria 

had to be achieved. The first was that the analytes from the air has to be pre-concentrated 

before entering the GCxGC. For this instrument, a FID was used to detect hydrocarbons. 

FIDs work by burning hydrocarbons to create ions, which are collected and form a small 

current that becomes the FID signal.  FIDs typically are only able to measure 10-11grams 

or around 50 ppb from a 10 mL sample volume without any sample pre-concentration 

techniques (McNair and Miller, 1998). Typical atmospheric concentrations of BVOCs are 

in the ppt range and therefore require some kind of pre-concentration technique 

(Fehsenfeld et al., 1992; Goldan et al., 1995). The second criterion that had to be met was 

that water had to be removed from the system. Water is found in much higher 
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concentrations in the atmosphere than BVOCs. Water can hydrolyze or bond to the 

stationary phase that coats the capillary column commonly used in GC analysis. When 

water competes for binding sites, it causes shifts in the retention time of analytes. 

Therefore, it is important to remove all water from the pre-concentrated sample. The third 

criterion that had to be met was that the sample has to be injected into the GCxGC system 

in a narrow plug or small volume of carrier gas to reduce band broadening and achieve 

the best resolution possible (McNair and Miller, 1998). 

To evaluate the best method for sampling BVOCs, three configurations of the 

sampler were tested. In the first configuration, a two stage sorbent trap method was 

employed. In the second configuration, a single sorbent trap was employed, followed by a 

custom designed cryofocusing trap. In the third configuration, a single sorbent trap was 

used to concentrate BVOCs.  The first configuration was tested because it theoretically 

offered a means to identify BVOCs with a volatility range including the highly volatile 

isoprene through semi-volatile substances, such as sesquiterpenes. The second 

configuration was tested because the two trap method did not effectively focus higher 

volatility analytes such as isoprene. The third configuration was tested because during a 

field campaign. It was determined that the cryogens needed to focus isoprene depleted at 

a much higher rate in the field than in a laboratory environment, and therefore, became 

too expensive. Details of these configurations are discussed below. 

Figure 3.3 shows the flow path of the sample for the first configuration of the 

system. 
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Figure 3.3 Sampling diagram of the first configuration sampling system. 

 

Six Vici Valco 6 port valves (Houston, TX) were housed in a custom made oven, 

maintained at 100° C. All lines inside the oven were 1/8th inch OD Silcosteel with 

hydroguard stainless steel (Restek, Bellefonte, PA) and were housed inside the oven. The 

sample was first trapped in a 7 inch long, 3/8th inch OD trap cooled by Peltier plates to 

10° C. The trap was filled with 50/50 (g/g) Tenax TA (60/80 mesh, Macheray & Nagel) 

and Carbopack B (20-40 mesh, Supelco). The structure of Tenax and Carbopack B are 

shown in Figure 3.4. 
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Figure 3.4 Structure of the sorbent materials used to trap BVOCs. 

 

Tenax is a sorbent material that is comprised of poly-2,6-diphyenylphenylene oxide and 

is used to trap VOCs with carbon numbers from 7 to 26 (Arnts, 2010; Dettmer and 

Engewald, 2002). Carbopack B is a comprised of graphitized carbon black and provide a 

non-specific site for adsorption processes, meaning London dispersion forces are the 

driving force and are able to trap VOCs with carbon numbers from 4 to 12 (Bruner et al., 

1990). The trap was preconditioned by flushing it with helium (99.995% purity) at 15 

ml/min while being heated to 300° C for 12 h. This removed any volatile impurities that 

may have been in the sorbents, including monomers of the sorbents. The sampling 

method involves adsorbing analytes onto the sorbents, while the bulk components of air 

pass through the trap. The trap can be rapidly heated under carrier gas flow to desorb and 

inject the analyte into the column. 
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Sampling onto the first trap lasted 20 minutes and occurred at a flow rate of 50 

ml/min. After sampling, the first sorbent trap was back-flushed at 10 ml/min for 10 min 

with ultra-high purity (UHP) helium to purge the trap of any O2, H2O, and other small 

non-BVOC components.  The second trap was a 1/8th inch OD trap that was cooled to 10° 

C by Peltier plates. The smaller second trap was needed to focus the analytes before they 

were injected into the GC. Transfer from the first trap to the second trap was achieved by 

heating the first trap to 200° C with a set of cartridge heaters. A flow of 10 ml/min of 

UHP He was used to transfer the sample from the first trap to the cooled second trap. 

After 10 minutes of transferring to the second trap, the sample was then injected into the 

GCxGC system. The sample was transferred into the GC by heating the second sorbent 

trap to 200° C and passing 1 sccm of ultra-high purity He through the trap for 10 minutes. 

The final transfer temperatures were chosen in an attempt to trap, concentrate, and desorb 

organic nitrate species without thermally degrading them, which becomes significant at 

~150° C (Hiskey et al., 1991) and all organic nitrates degrade at ~220° C (Day et al., 

2002).  

Figure 3.5 shows a chromatogram of a sample taken during a field campaign at 

the University of Michigan Biological Station (UMBS) in the summer of 2012.  
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Figure 3.5 GCxGC chromatogram of ambient sample from UMBS using configuration 1.  

 

From the figure, it can be seen that the compounds with lower volatilities (right side of 

chromatogram), such as monoterpenes and sesquiterpenes, were successfully 

concentrated and injected into the GCxGC system. However, higher volatility BVOCs 

(left side of chromatogram), such as isoprene, came out of the sampling system in a plug 

that was too broad. The GCxGC system was unable to resolve the very broad plug that 

precluded identification and quantification of the many coeluting species. 

The second configuration of the sampler utilized a single 1/8th inch OD sorbent 

trap coupled to a liquid nitrogen cooled cryofocuser. A cryofocuser is a device that uses a 

cryogen to condense analytes into a small volume. Upon rapid heating, the analytes 

vaporize and can be injected into the GC in a narrow volume. Figure 3.6 shows the 

schematic of the second configuration. 
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Figure 3.6 Flow schematic of the 2nd configuration of the sampling system. 
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Figure 3.6 Continued. 
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In this configuration, the sample was mixed with 1 ml/min of 1044 ppm and mixed in a 

0.5 m length of tubing to remove any O3 which would oxidize alkenes adsorbed onto the 

trap (Helmig, 1997). Analytes were adsorbed to the sorbent trap which was cooled at 5° 

C by Peltier plates. The sorbent trap was then back flushed with UHP He at 10 mL/min 

for 5 min to remove water and other species not adsorbed to the trap. The cryofocuser 

was then cooled to -140° C by liquid nitrogen and the sorbent trap was then heated to 

200° C by cartridge heaters and a flow of He was used to transfer the analytes from the 

sorbent trap to the cryofocuser.  The cryofocuser was then heated to ~200° C and a 1.0 

mL/min flow of UHP He was used to transfer the analytes in the cryofocuser into the 

GCxGC system.  

Figure 3.7 shows the design of the cryofocuser. The cryofocuser consisted of a 

ceramic insert inside a stainless steel case with a Nichrome wire wound inside. A type K 

thermocouple was welded to the Nichrome wire to monitor the temperature of the system. 

Two ports on the stainless steel body were used to inject and vent liquid nitrogen to cool 

the system. After multiple tests, it was determined that -140° C was an ideal temperature 

to cool the cryotrap. This temperature was chosen because at this temperature, isoprene 

and other high volatility BVOCs were concentrated into a very small plug, using the least 

amount of liquid N2.  

 

 



105 
 

 

Figure 3.7 Design of the custom cryofocusing unit. 

 

 Two electrodes were placed on opposite ends of the Nichrome wire. A 12 V, 200 

amp power supply was applied across the wire to heat the cryofocuser. Heating from  

-140° C to 200° C took place in ~3 seconds. The rapid temperature increase was faster 

than the ability of an Omega Micromega controller to read precisely, resulting in the final 

temperature to overshoot the 200° C setting to between 220° C to 240° C. 

Figure 3.8 shows a typical chromatogram of an ambient sample and a standard of 

isoprene, methyl vinyl ketone, and methacrolein taken with configuration 2. 
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Figure 3.8 Chromatogram of ambient sample (a) and isoprene, methyl vinyl ketone, and 
methacrolein standard (b) taken during SOAS using configuration 2. 
 
 

 From Figure 3.8 it can be seen that the higher volatility analytes were injected into the 

GCxGC system and successfully separated. However, the cost and load of using liquid N2 

in a field application became too great. In laboratory studies, a tank of 180 L of liquid N2 

lasted ~1.5 weeks running continuously. During the Southern Oxidant and Aerosol Study 

Isoprene 

Methyl 
Vinyl 
Ketone 

Methacrolein 

a) 

b) 
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in rural Alabama, a tank of liquid N2 lasted ~1 day. Another unknown problem that arose 

during the campaign was the unexpected failure of the heating element on the 

cryofocuser. On multiple occasions, the heating element failed to work and samples were 

never injected into the GCxGC. A third configuration was built in the field to deal with 

the unforeseen problems.  

The third configuration of the sample relied solely on a single 1/8 inch OD 

hypodermic piece of stainless steel that was filled with 50/50 (mass/mass) 

tenax/carbopack B. A schematic of the configuration is shown in Figure 3.9. The 

temperature of the GC oven was maintained at 40° C in an attempt to focus the analytes 

on the head of the primary column. 

 

Figure 3.9 Schematic of configuration 3. 
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Figure 3.10 shows a typical chromatogram for an ambient sample taken with the 

sampling system using configuration 3 during the SOAS campaign.  

 

 

Figure 3.10 Chromatogram of ambient sample obtained during the SOAS campaign with 
configuration 3. 
 
 
 
With this configuration, low volatility analytes such as monoterpenes were separated and 

detected, however, high volatility analytes such as isoprene were not injected in a 

suitably narrow plug to enable unambiguous separation and detection. 

 

3.2.3 GCxGC 

 The GCxGC was a modified Agilent 7890. Differential flow modulation was used 

as the means of transferring the sample from the first to secondary columns (Bueno and 

Seeley, 2004). The concept of differential flow modulation can be seen in Figure 3.11. 
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Figure 3.11 Schematic of comprehensive flow modulation. 

 

In flow modulation, the eluent from the primary column fills a small reservoir (a length 

of fused silica tubing that has ~0.5 mL of volume for the sample to fill) between two tees. 

After a modulation period (1.5 seconds for this instrument), the 3 port valve is switched 

and an excess flow of UHP He is diverted from the second tee to the first tee to flush the 

reservoir into the secondary columns for 1.5 seconds. The 3 port valve is then switched 

back and the reservoir is allowed to fill again. The primary column was a RTX-5 (5% 

diphenyl 95% dimethyl polysiloxane) while two semi-polar secondary columns where 

used for two different detectors. To separate and identify nitrooxy containing compounds, 

a 5 m strand of a DB-Wax (polyethylene glycol) column was used in conjunction with an 

electron-capture detector (ECD). To separate all other BVOCs, a 5 m DB-210 (50% 
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trifluoropropyl 50% methylpolysiloxane) column was used as the secondary column and 

was used in conjunction with a flame-ionization detector (FID). 

 

3.2.4 Sampling Line 

For sampling during SOAS, a ~6 m length of 3/8 inch OD stainless steel, coated 

with Silcosteel (Restek Inc. Bellefonte, PA), was used to sample in 1.5 LPM of air. To 

keep rain from entering the sample line, it was bent towards the ground. No filters were 

used to separate the particulate phase from the gas phase because the presence of Teflon 

from the filter holders created large artifact peaks in blank measurements. From the 1.5 

LPM of air, 100 sccm was sampled through the single trap. At a tee at the beginning of 

the sampling line, a flow of 7.2 sccm of 1044 ppm NO in N2 was added to the sample 

flow to scrub O3 (Holdren et al., 1979), yielding a concentration of 0.3 ppm NO in the 

sample air. This works by converting O3 to O2 by reaction 3.1. We calculated that 

99.99% of all O3 was removed.  

 

O3 is removed during sampling because it reacts with analytes (particularly alkenes) 

adsorbed to the sorbent materials (Helmig, 1997) and therefore leads to artificially low 

measurements.  

 

3.2.5 Sampling Locations 

 Configuration 1 of the sampling system was tested at the University of Michigan 

Biological Station in Pellston, MI. A description of the site can be found elsewhere 

(Carroll et al., 2001). Configuration 2 was tested during smog chamber experiments 



111 
 

performed at Purdue University and during the 2013 Southern Oxidant and Aerosol Study 

(SOAS) campaign. Configuration 3 was tested during SOAS in Brent, AL. The SOAS 

study occurred between June 1st and July 15th, 2013. The site was located outside of the 

Omugele Division of the Talladega National Forest which is shown in Figure 3.12. This 

site was chosen because average temperatures at this site have not risen over the past 

three decades (Portmann et al., 2009) and a hypothesis that the climate anomaly may be 

due to radiative effects of aerosols derived from BVOCs has been proposed (Goldstein et 

al., 2009). 

 

 

Figure 3.12 Site of the SOAS campaign in relation to the southeastern United States. 
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3.3 Results and Discussion 

 

3.3.1 Calibration System 

 Figure 3.13 shows the mass loss rates of the standards from the calibration system 

for the three different time periods. As shown in the figures, the mass loss rates are linear, 

the shape of which yields an accurate calibration source. 

 

 

Figure 3.13 Mass loss measurements of the seven standards during the 3 measurement 
periods for isoprene (a), trans-caryophyllene (b), toluene (c), isobutyl-nitrate (d), decane 
(e), 2-ethyl hexyl nitrate (f), and α-pinene (g). 
 

a) 
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Figure 3.13 continued. 

b) 

c) 
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Figure 3.13 continued. 

d) 

e) 
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Figure 3.13 continued 

f) 

g) 
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The first time period was from March 10th, 2012 to June 20th, 2012, the second time 

period was from January 22, 2013 to April 25th, 2013, and the third from August 23rd, 

2013 to January 12th, 2014. The second and third time periods represent the mass loss 

rates of the standards before and after the SOAS field campaign, respectively. Data from 

all three experiments were used to compare the relative error in the calibrations made 

during the SOAS campaign. The first design included a large Teflon block which showed 

a large outgas of contaminants in blank runs. The trans-caryophyllene in the first mass 

loss period slowly changed from clear to a yellow color, indicating some form of 

chemical change that would change the vapor pressure. This problem is manifested in the 

poor linearity of the slope for trans-caryophyllene in Figure 3.13b. An oxygen impurity is 

unlikely since the block was leak checked daily to insure the integrity of the seals.  

Table 3.2 shows the comparison of the mass loss rates of the seven compounds 

for the three measuring periods. Larger relative error in the measurements for the first 

time period are most likely due to over sampling. The vials in the first configuration were 

weighed each week, compared to two weeks for the second and third configuration. The 

poorer precision during the first mass loss period is most likely a result of dust 

contamination, chipped glassware, scale drift, and evaporative loss from handling the 

diffusion tubes (Helmig et al., 2003). 
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Table 3.2 Mass loss rates and average loss rate for the 3 configurations. Loss rates are all 
measured in ng/s. 
 

Compound 
Loss Rate 

1 
Loss Rate 

2 
Loss Rate 

3 Average 
Std 
Dev 

Relative Error 
(%) 

Isoprene 16.8±5 11.1±5 2.23±0.9 10 7.3 73 
trans-

caryophyllene 3.85±2 3.91±0.4 3.31±0.4 3.69 0.3 9 
toluene 4.03±2 10.8±1 9.55±1 8.13 3.6 44 

isobutyl-nitrate 7.63±2 2.92±1 2.42±1 4.32 3 66 
decane 5.96±1 6.74±2 5.89±0.7 6.2 0.5 8 
2-ethyl-

hexylnitrate 5.48±1 6.37±0.4 6.37±0.7 6.07 0.5 8 
α-pinene 6.78±3 6.17±3 5.57±1 6.17 0.6 10 

 
 
 

3.3.2 Ambient Air Sampling 

The third configuration was built and used at SOAS after the failure of the second 

configuration. While we determined the retention times of α-pinene, β-pinene, camphene, 

limonene, γ-terpinene, terpinolene, myrcene, and the monoterpenoid p-cymene, the only 

observable species at the site were the first four. Mycrene could not be distinguished in 

the 2D plots as its primary and secondary retention times were indistinguishable of those 

for β-pinene. Figure 3.10 shows a 2D chromatogram taken during the campaign.  

 The third configuration enabled separations of monoterpenes and other species 

with a similar vapor pressures, yet still suffered from poor resolution. While the first 

configuration was able to produce baseline peak widths of 3 s, the third configuration 

produced baseline peak widths of 12 s. This resolution problem became an issue when 

determining the mycrene and limonene concentrations. Due to the wide peak widths, 

mycrene and β-pinene were completely indistinguishable, while limonene could only 

occasionally be baseline resolved due to another unknown compound that co-eluted. 
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These observations illustrate the difficulty and the importance of resolving power in the 

determination of monoterpenes. 

In spite of the limitations, configuration 3 provided useful data, and therefore 

configuration 3 was used for the SOAS data acquisitions. A large comprehensive data set 

was collected, and therefore the remaining sections of this chapter will deal with focusing 

on characterizing the third configuration of the automated GCxGC. 

 

3.3.3 Determination of Retention Times 

 Commercial samples of α-pinene, β-pinene, camphene, limonene, γ-terpinene, 

terpinolene, myrcene, and p-cymene were diluted in HPLC grade hexane to 

concentrations of 0.1% by volume during the SOAS campaign and injected into carefully 

metered 80 L Teflon bags through a heated glass tee. The liquid phase standard solutions 

were used to obtain the primary and secondary retention times and used periodically 

throughout the SOAS campaign to assure that there was no drift in the retention time 

during the campaign. The results can be seen in Table 3.3 and an ambient chromatogram 

is shown in Figure 3.14. 

 

Table 3.3 Retention times of monoterpenes as measured during the SOAS campaign. 

Compound Primary Retention Time (s) Secondary Retention Time (s) 
p-cymene 756.0 2.355 
α-pinene 669.0 2.170 
β-pinene 711.0 2.220 
limonene 760.0 2.280 

terpinolene 817.5 2.315 
myrcene 715.5 2.225 
γ-terpinene 750.0 2.265 
camphene 681.0 2.180 
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Figure 3.14 Ambient chromatogram of monoterpenes measured during SOAS. 

 

Myrcene’s primary and secondary retention times were too similar to that of β-

pinene for it to be baseline resolved. Myrcene appeared as a shoulder on β-pinene peaks 

in the 2D chromatograms. Another problem that arose during the field campaign was the 

presence of a compound that co-eluted with limonene. This occurred in over half of the 

chromatograms during the campaign. To distinguish and confidently identify limonene, a 

Welch’s t-test was used to assure the difference separation of the two co-eluting peaks. 

The t-test was performed and there was no statistical difference between the primary 

retention time of the first eluting peak and the primary retention time of the limonene 

standards (t =1.65 < 2.78, the critical t-value at p=0.05). It was concluded that the peak 

that eluted first was limonene. 
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3.3.4 Calibration 

 Every day during the SOAS campaign a gas-phase standard bag was made to 

calibrate the instrument. An 80 L Teflon bag was filled with an accurately known volume 

of ultra-zero air using a calibrated mass flow controller, and then attached to the diffusion 

source at the end of the ultra-zero air fill for various time periods to make a gas phase 

standard. The peak areas for each gas phase standard were divided by the number of liters 

of air sampled to correct any differences in the volume sampled. The calibration range 

covered the range of ambient values. The calibration data for each day throughout the 

field campaign is shown in Figure 3.15. From variability of the blanks, and the slope of 

the calibration curve, the limit of detection (LOD = 3 x σ/ sensitivity) for α-pinene for 

was determined to be 0.05 ppt. The standard error of the slope was 2.7 ppb s-1, or 7%. 
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Figure 3.15 Calibration Curve obtained during the SOAS campaign. 

 

3.3.5 Sensitivity Analysis 

 It was determined that a simple linear regression wasn’t applicable to determining 

the sensitivity of the GCxGC. In a simple linear regression, it is assumed that the 

uncertainty in data is solely or dominantly in the dependent variable. There is a large 

uncertainty in the process of making the calibration standard bags at low concentrations 

(MFC error, stopwatch error, and most importantly the diffusion source calibration 

system). The dominant uncertainty for our calibrations was not in the dependent variable, 

but in the independent variable. To account for errors in the regressor and dependent 

variable, an error-in-variables model was chosen. 
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Linear Least Squares Regression Deming Regression 

A Deming regression is a simple error-in-variables model that was used to 

determine the slope, y-intercept, and errors in those parameters. A Deming regression is a 

special case of total least squares in which any number of predictors is allowed. In a 

simple linear regression the residuals of the least squares analysis are minimized about 

the y-axis assuming a normal distribution (Figure 3.16). In a Deming regression, the 

residuals are minimized about the y-axis and x-axis. This allows for the error in the 

dependent and independent variable to be factored into finding the best fit line within the 

bounds placed on the measured errors. In this case a simple Deming regression was used. 

This means that the error terms are constant and the data are not weighted (Martin, 2000). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Difference between a simple linear regression and Deming regression. 

 

In a Deming regression, the slope of the line is calculated by using Equation 3.6. 

 m = (syy-δsxx + [(syy-δsxx)2+4δs2
xy]1/2)/2sxy                              Equation 3.6 
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The y-intercept for a Deming regression is calculated using Equation 3.7. 

 b= (ȳ-mx̄)                                                                         Equation 3.7 

For Equations 3.6 and 3.7: 

 sxx = (1/n-1)∑(xi-x̄)2                                                             Equation 3.8 

 syy = (1/n-1)∑(yi - ȳ)2      Equation 3.9 

 sxy = (1/n-1)∑(xi-x̄)(yi - ȳ)     Equation 3.10 

 x̄ = 1/n ∑xi       Equation 3.11 

 ȳ = 1/n ∑yi       Equation 3.12 

 δ = σy/σx       Equation 3.13 

This leads to a new calibration curve equation: 

 y = 43.13x-3.619 

This is 6% different from the simple linear regression result of y = 40.48x -1.63. 

 GraphPad Prism, a statistical software, was used to perform a Deming regression 

on the calibration and it calculated the errors, as shown below. The analysis found that at 

the 95% confidence interval, the y-intercept includes 0. 
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Table 3.4 Deming regression analysis of the calibration curve obtained during the SOAS 
campaign. 
 
GraphPad Results 

Best-fit values 

Slope 43.1 ± 2.3 

Y-intercept when X=0.0 -3.6 ± 2.2 

X-intercept 0.085 

1/slope 0.023 

95% Confidence Intervals 

Slope 38.3 to 48.0 

Y-intercept when X=0.0 -8.4 to 1 

Goodness of Fit 

r² 

Sy.x 6.396 
 

   

 
 
 
It should be noted that in a Deming regression an r2 (coefficient of correlation) is not 

calculated. In a normal least squares regression, r2 is the fraction of the variation that is 

accounted for by the model. No known method for determining the r2 of a Deming 

regression is currently exists (Martin, 2000). 

 

3.3.6 Transfer Efficiency Tests 
 

One of the main uncertainties that arose during the SOAS campaign was an 

incomplete understanding of the transfer efficiency of the sorbent trap. The transfer 
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efficiency is a measure of the fraction of the amount of analyte that is transferred from 

the sorbent trap and injected into the column, relative to the amount injected. This 

quantity assumes 100% collection efficiency and also includes reactive loss on the 

sorbent trap. It is critical to know so that any corrections to the data could made so that 

accurate concentration measurements would be reported. Due to the lack of repeat 

transfer efficiency tests during the SOAS campaign, the sampling system was rebuilt at 

Purdue. The 2-dimension Agilent 7890 was replaced with a 1-dimensional Varian 450-

GC. An Rtx-5 (95% dimethyl polysiloxane, 5% diphenyl) column was used to separate 

selected monoterpenes, similar to that of the primary column used in the Agilent 7890. 

All calibration standard bags were directly connected to a heated ¼ inch OD Silcosteel 

line connected to the back of the sampling system so that the sampling flow was 100 

sccm. The temperature lines of the sampling line was maintained at ~100° C, similar to 

the temperature used during the SOAS campaign. A 1 sccm flow of 1044 ppm NO was 

injected into the sample flow to replicate the SOAS set-up. A simple configuration is 

shown in Figure 3.17.  

 

 

Figure 3.17 Basic setup of transfer efficiency tests. 
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A liquid sample was made that contained α-pinene, b-pinene, limonene, and 

camphene, diluted in HPLC grade hexane. The first solution was 0.17% by volume 

camphene and 0.50% by volume α-pinene, β-pinene, and limonene. This solution was 

called the “limonene mix”. Due to the inability of the 1D-GC column to separate p-

cymene and limonene, a second solution containing α-pinene, p-cymene, γ-terpinene, and 

terpinolene was made to quantify the transfer efficiency for p-cymene. The solution was 

called the “p-cymene mix”. 

The limonene mix solution was directly injected 5 times into the GC through a 

liquid injector with a 1:20 split ratio. The peak areas measured were then divided by the 

area of the α-pinene peak to give the relative peak areas as seen in Table 3.5. This then 

quantifies the quantities of each terpene in the sample, relative to α-pinene. 

 

Table 3.5 Relative peak areas for 5 liquid injections. 
 

 Peak Area Relative Peak Area Average 
Relative 

Peak Area 

Relative  
Standard 
Deviation 

1 2 3 4 5 1 2 3 4 5  

α-pinene 133.3 210.6 97.8 63.7 43.5 1.00 1.00 1.00 1.00 1.00 1.00  

camphene 43.8 70.4 32.8 21.5 15.1 0.328 0.334 0.335 0.337 0.347 0.336 0.021 

β-pinene 122.4 202.2 92.1 60.2 40.7 0.918 0.960 0.942 0.945 0.936 0.940 0.016 

limonene 114.6 190.5 86.0 54.4 39.6 0.860 0.905 0.879 0.854 0.910 0.881 0.025 

 
 
 

The 1 μL aliquot of the limonene mix was then injected into a 28 L bag, and this 

bag was sampled a total of 4 times. The resulting peak areas and relative peak areas are 

shown in Table 3.6. A new bag was made and 0.5 μL of the limonene mix was injected 



127 
 

and the results are presented as experiment 5. Since the first 4 experiments were 

performed from the same calibration bag and there is no significant change in the peak 

areas observed, it was determined that wall loss was not a major factor in this error 

analysis. 

 

Table 3.6 Relative peak areas of 5 bag samples. 
 

 
 
 

To obtain the transfer efficiency of the compounds, Equation 3.14 was used where 

the averages for the relative peak areas from the bag samples were divided by the 

averages for the relative peak areas of the liquid samples. In this equation, the FID 

response of the individual monoterpenes canceled giving a unitless transfer efficiency 

value. Errors in the transfer efficiency will be discussed below. 

Equation 3.14 

 Peak Area Relative Peak Area Average 
Relative 

Peak 
Area 

Relative 
Standard 
Deviation 

1 2 3 4 5 1 2 3 4 5   

α-pinene 791.8 789.4 793.6 790.5 435 1.00 1.00 1.00 1.00 1.00 1.00  

camphene 268.9 270.6 272.3 269.2 149.6 0.340 0.343 0.343 0.340 0.344 0.342 0.006 

β-pinene 715.6 717.1 718.7 705.1 392.5 0.904 0.908 0.906 0.892 0.902 0.902 0.007 

limonene 332.0 319.3 337.7 335.2 181.6 0.419 0.404 0.425 0.424 0.417 0.418 0.02 
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The resulting transfer efficiencies were: 
 
 
 
Table 3.7 Preliminary transfer efficiency results for limonene mix 1. 
 

Compound Transfer Efficiency (1) 
α-pinene 1.00 

camphene 1.02 
β-pinene 0.960 
limonene 0.474 

 
 
 
 

To expand the data set, two more “limonene mix” solutions were made. The first 

solution contained 0.50% by volume α-pinene, β-pinene, and limonene and 0.16% by 

volume camphene. The second solution contained 0.25% by volume α-pinene, β-pinene, 

and limonene and had a concentration of camphene that was 0.13% by volume. The same 

test described above was performed on the two “limonene mixes.” Finally, a gas-phase 

calibration standard bag was filled with zero air passed through a bubbler to add humidity 

to the bags, to test for the impact of water on the transfer efficiencies. To assure leaks in 

the bag were not affecting the transfer efficiency results, new bags were made for each 

solution and leak checked before use. In total, 11 liquid injections and 11 bag injections, 

5 from the first mix, and 3 from each of the subsequent two mixes were used to calculate 

the relative response of the monoterpenes to α-pinene. The final transfer efficiencies 

calculated from averaging these 11 liquid and 11 gas phase samples is shown in Table 

3.8. The uncertainties in Table 3.8 are described below. 
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Table 3.8 Transfer Efficiencies for the compounds found in the limonene mix solutions. 

Compound Transfer Efficiency Uncertainty in Transfer Efficiency 

α-pinene 1.00 - 

Camphene 1.06 0.02 

β-pinene 0.95 0.03 

Limonene 0.40 0.05 

 

 

To calculate the precision of the transfer efficiency, the standard deviation of the 

relative areas from the liquid and gas phase injections for each solution were propagated 

to give a final uncertainty for the 3 selected monoterpenes. Uncertainties were calculated 

using Equation 3.15 where x, y, and z represent the standard deviation and average of 

limonene mix 1, limonene mix 2, and limonene mix 3, respectively. Random errors of 

0.02, 0.03, and 0.05 were calculated for camphene, β-pinene, and limonene, respectively 

and can be seen in Table 3.8. 

                                                             Equation 3.15 

 
To obtain the transfer efficiency for p-cymene, one solution of p-cymene mix was 

made that contained 0.5% p-cymene, terpinolene, and γ-terpinene. Only one p-cymene 

mix was made due to the little variation in transfer efficiencies between the 3 limonene 

mixes. The same procedure for determining the transfer efficiency was followed as 

described previously. The transfer efficiencies of the p-cymene mix were combined with 

the transfer efficiencies of the limonene mix and the results shown in Table 3.9. 
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Table 3.9 The final transfer efficiencies and errors in transfer efficiencies. 

Compound Transfer Efficiency Uncertainty in Transfer 

Efficiency 

α-pinene 1.00 0.00 

camphene 1.05 0.06 

β-pinene 0.95 0.03 

limonene 0.41 0.08 

p-cymene 0.30 0.02 

γ-terpinene 0.21 0.02 

terpinolene 0.14 0.02 

 

 

From Tables 3.3, 3.8, and 3.9, it can be seen that as the retention time of the compound 

increased, the transfer efficiency decreased. The vapor pressures at 20° C according to 

Sigma Aldrich of β-pinene, p-cymene, limonene, γ-terpinene, and terpinolene are 2 mm 

Hg, 1.5 mm Hg, 1 mm Hg, 0.7 mm Hg, and 0.5 mm Hg, respectively. This means that the 

200° C heating temperature was probably not efficient at desorbing analytes with lower 

vapor pressures than β-pinene. 

 

3.3.7 Error Analysis 

The mass loss rate of the calibration system was measured on three separate 

occasions. The results are shown in Table 3.10. 
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Table 3.10 Uncertainties in the analysis of the diffusion rate from the calibration system 

Compound Loss Rate 1 Loss Rate 2 Loss Rate 3 Average 
Std 
Dev 

Relative 
Error (%) 

trans-
caryophyllene 3.85±2 3.91±0.4 3.31±0.4 3.69 0.3 9 

toluene 4.03±2 10.8±1 9.55±1 8.13 3.6 44 
isobutyl-

nitrate 7.63±2 2.92±1 2.42±1 4.32 3 66 
decane 5.96±1 6.74±2 5.89±0.7 6.2 0.5 8 
2-ethyl-

hexylnitrate 5.48±1 6.37±0.4 6.37±0.7 6.07 0.5 8 
α-pinene 6.78±3 6.17±3 5.57±1 6.17 0.6 10 

             
 

 

The transfer efficiency data and the calibration error data were then used to 

calculate the uncertainty in the concentration measurements for each species. To calculate 

the uncertainty in the measurements, the concentrations were calculated according to 

Equation 3.16, and the uncertainties in each term propagated to yield a final uncertainty 

for the result.  

 [C] = [(pa/V)/b]/T                                                                       Equation 3.16 

In Equation 3.16, C is the concentration of monoterpene, pa is the peak area, V is the 

sample volume, b is the sensitivity of the instrument to α-pinene measured as counts per 

ppb per liter sampled, and T is the transfer efficiency. The uncertainty in the 

concentration measurements was calculated using Equation 3.17. 

 Uncertainty (αA/A) = [(σpa/pa)2+(σV/V)2+(σb/b)2+(σT/T)2]1/2      Equation 3.17 

Since σA/A = relative standard deviation (RSD), we assumed A is the true value and 

therefore the uncertainties will be reported in RSD. In Equation 3.17, the variables are the 

same as those in Equation 3.16. The uncertainty of the sample volume was determined by 
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repeatedly measuring the flow rate of the sample mass flow controller, and the precision 

was found to be 1.2%. The uncertainty in determining the peak area was determined by 

calculating the area of a standard peak that was measured three times, and the precision 

was found to be 0.5%. The uncertainty in the sensitivity was determined by using the 

Graph Pad analysis shown in Table 3.11. The uncertainty in the transfer efficiencies was 

described above and can be found in Table 3.9. Table 3.11 lists the overall uncertainty for 

each of the species that, or could be, measured using the GCxGC sampling system.  

 

Table 3.11 Uncertainty of measurement calculated through propagation of errors.   

Compound Uncertainty in Measurement (RSD) 

a-pinene 11% 

camphene 11% 

b-pinene 11% 

limonene 12% 

p-cymene 13% 

y-terpinene 13% 

terpinolene 15% 

 

 

3.3.8 Finalized Data 

 From the extensive characterization of the instrument and the error analysis 

performed, the measurements of the 4 monoterpenes and p-cymene during the SOAS 

campaign data were compiled and are presented in Figure 3.18. The peak areas of all the 
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chromatograms were calculated using an automated program designed by John Seeley of 

Oakland University. On average, the uncertainty in peak integration was small, with a 

relative standard deviation of 0.5%. 

 

 

Figure 3.18 Finalized monoterpene and p-cymene data from SOAS 2013. 

 

3.3.9 Comparison to a GC-MS 

 The measurements obtained at the SOAS field campaign were compared to the 

measurements conducted at the site by Abigail Koss (National Oceanic and Atmospheric 

Administration),  Joost de Gouw (National Oceanic and Atmospheric Administration), 

Kevin Olson (University of California Berkeley), and Allen Goldstein (University of 

California Berkeley), using GC-MS. The GC-MS sampled from atop a 40 m tower while 
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the GCxGC measured monoterpenes from approximately 4 m above the ground. 

Locations of sampling site can be seen in Figure 3.19. The GCxGC was located on top of 

a grassy hill while the GC-MS was located above a forest canopy, and due to the different 

locations, this comparison is not ideal.  

 

 

Figure 3.19 Sampling locations of GCxGC and GC-MS. 

 

For a wind speed of 5 m/sec, the BVOCs were transported on the order of 100 meters (in 

about 20 seconds), much larger than the distance between inlets.  

 To compare the two data sets, the concentrations of the monoterpenes measured 

by the GCxGC were compared with the concentrations of the monoterpenes measured by 

the GC-MS for overlapping samples. The GC-MS operated at 30 minute intervals, at 

GCxGC

GC‐MS 
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every hour and half hour mark (i.e. 0100, 0130, 0200, 0230, etc…) while the GCxGC 

system sampled every hour (0100, 0200, 0300, etc…). This means that when operational, 

there is a GC-MS data set for every GCxGC data set. The results are seen in Figure 3.20.  

 

 

Figure 3.20 Comparison of GC-MS to GCxGC data during SOAS 2013. 

 

 There are slight differences between the two measurement methods. The GCxGC 

tends to detect α-pinene at higher concentrations while β-pinene and camphene tend to be 

measured at lower concentrations. The limonene and p-cymene data are very scattered 

and appear to have poor correlation. To determine if there is a linear relationship between 

the GC-MS data and the GCxGC data, the correlation coefficient was calculated 

according to Equation 3.18.  
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                                                           Equation 3.18 

In equation 3.18, r is the correlation coefficient, X is a concentration value measured at 

time t by the GCxGC system, Y is a concentration value measured at time t by the GC-

MS, and n is the number of data points compared. The correlation coefficient was 

calculated to be 0.946 for α-pinene, 0.945 for β-pinene, 0.952 for camphene, 0.581 for 

limonene, and 0.327 for p-cymene. Using an ANOVA test, it was concluded that at 

p<0.05 for n>100, there is a significant relationship between the two data sets. 

Measurements of p-cymene are consistently at or near the detection limit for both 

instruments (LOD = ~0.1 ppt for the GC-MS) and may be the reason there is such a poor 

correlation between the data sets. A reason for the limonene difference may be due to the 

reactivity of limonene. Hu et al. (2013) found that around 80% of limonene emitted 

within the forest canopy at a forested site in North Carolina was consumed in ~100 s. 

Due to limonene’s high reactivity towards the OH, O3, and NO3, there may be 

measurably different concentrations at the two measuring sites. The poor correlation 

between the limonene data sets may be due to the transfer efficiency not being constant 

throughout the campaign. No long term measurements were made to see if the transfer 

efficiency of limonene remained constant.  

 

3.4 Conclusions and Future Work 

 Demonstrated above is a comprehensive flow-modulated GCxGC instrument 

developed to quantify BVOC concentrations of various carbon number ranges. Three 

sampling configurations were tested, each with their own advantages and disadvantages. 
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A large data set of monoterpenes and other unknown compounds was collected at the 

SOAS field campaign.  

 However, there is still instrumentation work to be done. One goal that was 

unachieved by this instrument was the quantification of organic nitrates, specifically the 

isoprene nitrates. ECD data from the SOAS field campaign was not interpretable. The 

blank measurements obtained had more analyte peaks then the ambient samples. There is 

no known reason for this problem currently. Adequate testing of sorbent materials was 

also not performed. Sorbent materials were chosen using previous literature suggestions 

on making measurements with the highest trapping efficiency with the lowest 

contamination potential. An optimal sorbent material would be able to adsorb C4-C20 

species with no affinity for water. An added advantage would be the ability to measure 

the aerosol phase organic species through an online aerosol sampling system utilizing 

humidification and inertial impaction as described in Williams et al. (2006). Proper 

sorbent material, along with a better temperature profile, could lead to a possible method 

for the detection of organic nitrates in the atmosphere. 

There is also a need to improve the range of species this instrument can separate 

and detect. The first and third configurations were successful at quantifying species that 

were C10 and above, but unable to trap high volatility compounds such as isoprene (C5). 

While the cryofocuser was successful at trapping high volatility species, it made injection 

plugs entering the GCxGC system too small for precise quantification. A better trapping, 

purging, and desorption method is needed to accurately and precisely identify a very 

broad range of BVOCs in the atmosphere. 
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CHAPTER 4 THE IMPACT OF ORGANIC NITRATE PRODUCTION ON OZONE 
PRODUCTION IN A SOUTHEASTERN MIXED FOREST ENVIRONMENT 

 
 
 

4.1 Introduction 

 BVOCs are emitted at a rate of 1150 Tg C yr globally and account for ~90% of 

total non-methane volatile organic compound emissions (Guenther et al., 1995). BVOC 

emissions are dominated by isoprene (C5H8), monoterpenes (C10H16), reactive volatile 

organic compounds (CxHyOz), and non-reactive volatile organic compounds (CxHyOz) 

have atmospheric lifetimes between minutes to days due to the reaction with OH radicals, 

NO3 radicals, and O3 (Atkinson, 2007; Guenther et al., 1995). Understanding the 

chemistry of BVOCs is essential in understanding the production of ozone (Ridley et al., 

1992a), the formation of secondary organic aerosol (Hallquist et al., 2009), and the 

nitrogen cycle (Costa et al., 2011; Galloway et al., 2008).  Details of BVOC chemistry 

can be found in Chapter 1. 

Equation 4.1-4.3 shows the NOx cycle and equations 4.4 through 4.9 show a 

simplified oxidation pathway of BVOCs, where R represents BVOCs and R’O is 

generally an aldehyde or ketone. 
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Reactions 4.1 through 4.3 show that NO and NO2 interconvert through photolysis and 

reaction with O3 to form a null catalytic cycle (Thornton et al., 2002). From reaction 4.6 

and 4.8, NO is able to be converted into NO2 without the destruction of O3 as is the case 

for reaction 4.1. While concentrations of RO2 and HO2 are typically ~1000 times lower 

than O3, the rate constants for reaction 4.6 and 4.8 are typically ~1000 faster than reaction 

4.1, providing a mechanism for the production of O3. Usually, the carbonyl compound 

formed in 4.7 continues to be oxidized, yielding more than two O3 molecules per BVOC 

emitted (Thornton et al., 2002). This production rate is dependent on the assumptions that 

steady state has been reacted, or that the chemistry described in reactions 4.1-4.9 is 

complete and there are no new sources or sinks of NOx into the system (Thornton et al., 

2002). Greater detail of the chemistry can be found in Chapter 1. 

It can be seen that the production of organic nitrates, defined in this chapter as 

RONO2 (reaction 4.6), acts as a chain termination step in these cycles and limits the 

production ozone by preventing peroxy radicals (RO2) from converting NO into NO2 

without the loss of O3 (Ridley et al., 1992a; Thornton et al., 2002), and removal of NOx, 
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the ozone precursor. Understanding of the branching ratio or the percent of time equation 

4.6 occurs over the both RO2 + NO reactions (4.5 and 4.6) shown as γ in Equation 4.1, is 

one of the most important parameters in understanding organic nitrate formation.  

 

Yet, measurements of the branching ratio for isoprene vary from 7% (Lockwood et al., 

2010) to 14% (Lee et al., 2014b). 

Understanding the formation of organic nitrates is critical to understanding 

tropospheric chemistry. Measurements of total RONO2 have shown that RONO2 is a 

large portion of NOy (NOy=NO+NO2+NO3+HNO3+all other oxidized nitrogen species) 

in rural environments (Browne and Cohen, 2012; Murphy et al., 2006). Work by O’Brien 

et al. (1995) first showed that BVOCs should dominate organic nitrate production. Work 

by Browne et al. (2013) has shown that the instantaneous production of organic nitrates 

exceeds the production of HNO3 over a boreal forest in rural Canada and organic nitrates 

were on average 22% of total NOy. However, the reactions and production of organic 

nitrates remain poorly understood and their effect on the composition of the atmosphere 

is poorly studied (Mao et al., 2013; Sommariva et al., 2011; Thornberry et al., 2001). 

 Due to isoprene being the dominant BVOC emission, there has been much 

research in the area of effect of isoprene nitrates and their effect on local and regional 

tropospheric chemistry (Ito et al., 2007; Lockwood et al., 2010; Mao et al., 2013; O'Brien 

et al., 1995; Paulot et al., 2012; von Kuhlmann et al., 2004; Weaver et al., 2009; Wu et 

al., 2007; Xie et al., 2013). By adjusting the production yield of isoprene nitrates from 

4% to 12%, Wu et al. 2007 modeled a 10% decrease in worldwide O3 concentrations. 
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There are large uncertainties in isoprene + NO3 chemistry, as studies have shown that 

NO3 oxidation only accounts for 6-7% of isoprene oxidation (Horowitz et al., 2007), but 

the reaction contributes 30-60% to the formation of isoprene nitrates (Paulot et al., 2012; 

Perring et al., 2009b; von Kuhlmann et al., 2004). This organic nitrate formation pathway 

is important as isoprene is a significant sink for NO3, mainly at night (Brown et al., 2009; 

Starn et al., 1998).  

While there has been considerable research into isoprene nitrates, there have been 

few studies on the production or impact of monoterpene nitrates and other nitrate species 

(Browne et al., 2014; Pratt et al., 2012). These organic nitrates could have a large impact 

on ozone production as Pratt et al. (2012) reported that monoterpene nitrates were 

simulated to comprise up to 83% of primary organic nitrate production at night and 

during the early morning (no radiation present). The specific reactions or pathways that 

lead to organic nitrate production have not been well characterized (Paulot et al., 2009). 

Understanding these reactions is also critical to understanding secondary organic aerosol 

production, as organic nitrates are believed to be SOA precursors (Hallquist et al., 2009; 

Ng et al., 2008). Ng et al. (2008) have shown that the NO3 + isoprene reaction leads to 

the formation of dinitrates and aerosol-phase oligomers meaning this reaction removes 

NOx from the troposphere. It is critical to understand the impact of individual organic 

nitrates so that future laboratory studies can focus on measuring and characterizing the 

most important species that form organic nitrates.  

The southeastern United States has not observed the higher temperatures that the 

rest of the United States has observed in previous decades (Goldstein et al., 2009; 

Portmann et al., 2009). Goldstein et al. (2009) hypothesized that the large BVOC 
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emissions from this region react with anthropogenic pollution to form SOA, and result in 

an overall cooling effect. This emphasizes the need for further investigation of the 

emissions and chemistry occurring in the region to test this hypothesis. Pye et al. (2010) 

have shown that including NO3 radical chemistry, monoterpene and sesquiterpene aerosol 

doubles and isoprene aerosol is enhanced by 30% to 40% in the Southeast United States.  

Ng et al. (2007) have shown that monoterpenes and sesquiterpenes exhibit larger yields 

under high-NOx conditions as a result of either a higher probability of isomerization of 

RO2 radicals (Ehn et al., 2014a) or it could be due to higher organic nitrate yields 

observed with larger BVOCs (Arey et al., 2001). The Southern Oxidant and Aerosol 

Study (SOAS) was conducted in Brent, Alabama in the summer of 2013 to identify the 

unique chemistry and species that are occurring in the southeastern United States.  

Due to global climate change, increasing temperatures will cause increases in 

BVOC emissions (Guenther et al., 1993). Using the best known models, climate warming 

in the past 30 years has increased BVOC emissions by 10% globally (IPCC, 2007). A 

predicted 2-3° C increase in mean global temperature could increase BVOC emissions by 

an additional 30-45% (Penuelas and Llusia, 2003). While NOx concentrations in the 

United States and Europe have steadily decreased in the past decade, emissions have 

increased in Asia. The emissions in Asia offset any reduction in other parts of the world, 

and overall emissions of NOx are increasing and these emissions impact air quality 

(Lamsal et al., 2011). A better understanding of the chemistry occurring between NOx 

and BVOCs is needed to understand future air quality. In this study, we have identified 

the important BVOCs that lead to organic nitrate formation, the pathways in which they 
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are formed, and the effect organic nitrate formation has on ozone production during the 

SOAS campaign. 

 

4.2 Experimental 

 

4.2.1 SOAS Site Description 

The Southern Oxidant and Aerosol Study (SOAS) was an undertaking to lead to a 

greater understanding of the chemistry and physical processes occurring in the southern 

eastern United States atmosphere focusing on the following questions: 

1. What are the magnitudes, variations, and controlling processes for biosphere-

atmosphere fluxes of oxidants and reactive carbon and nitrogen across spatial 

scales relevant to air quality and climate? 

2. What are the chemical and physical processes that control the oxidation of 

BVOC? How do anthropogenic emissions alter the distribution of the BVOC 

oxidation products, and what are the implications for the formation of O3, 

reactive nitrogen, and aerosol precursors?  

3. To what extent do anthropogenic influences impact biogenic SOA formation? 

4. How does aqueous chemistry and cloud processing of BVOCs and related 

aerosols influence atmospheric SOA? 

5. What are the climate-relevant properties of biogenic aerosol (VOC of biogenic 

origin)? 

Figure 4.1 shows the location of the sampling site. 
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Figure 4.1 Location site of the SOAS campaign in relation to the southeastern United 
States. 
 
 
 
The SOAS campaign occurred during the summer of 2013 outside the Oakmulgee 

division of the Talladega National Forest in central Alabama (32.94, -87.174722). Full 

details of the site can be found in Nguyen et al. (2015). A brief description of the site is 

given here. Measurements of BVOCs were performed on a tower located ~40 m from the 

surface, while measurements of O3, NOx, relative humidity, and radiation were conducted 

at approximately 10 m from the ground the Atmospheric Research and Analysis trailer 

located approximately 100 meters from the tower. PAN (peroxyacetic nitric anhydride), 

PPN (peroxypropionic nitric anhydride), MPAN (peroxymethacrylic nitric anhydride) 

and isoprene nitrates were measured at a trailer approximately 30 meters from the 

Atmospheric Research and Analysis trailer, and ~130 meters from the tower-based 

measurements. Vegetation at this site was dominated by pine and oak trees with a 
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mixture of sweetgum, hawthorn, dogwood, tulip and maple trees. Mean wind at this site 

generally came from the southeast. 

 

4.2.2 Instrumentation 

 Measurements of NO2, NO, O3, OH, HO2, CO, relative humidity, temperature, 

and a suite of BVOCs were continually measured at the site. Table 4.1 lists the species, 

detection methods, and uncertainties for each detection method for the SOAS campaign.  

 

Table 4.1 List of species constrained in the model along with measurement technique and 
uncertainty. Abbreviations are as follows, laser induced fluorescence (LIF) and gas 
chromatography-mass spectrometry (GC-MS). 
 

Constrained Species 
Measurement 

Technique Reference 

Measurement 
Uncertainty 

(%) 

OH LIF Mao et al. 2012 32 

HO2 LIF Mao et al. 2012 32 

NO Chemilumenescence Ridley et al. 1990 5.5 

NO2 Chemilumenescence Ridley et al. 1990 15 

CO  IR Spectroscopy 7.4 

O3 UV Spectroscopy 6.1 

isoprene PTR-MS De Gouw and Warneke 2007 30-50 

MVK+MACR PTR-MS DeGouw and Warneke 2007 30-50 

a-pinene GC-MS Goldan et al. 1995 20 

b-pinene GC-MS Goldan et al. 1995 20 

limonene GC-MS Goldan et al. 1995 20 

myrcene GC-MS Goldan et al. 1995 20 

camphene GC-MS Goldan et al. 1995 20 

ethane GC-MS Goldan et al. 1995 20 

ethene GC-MS Goldan et al. 1995 20 

propane GC-MS Goldan et al. 1995 20 
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Table 4.1 continued. 

Constrained Species 
Measurement 

Technique Reference 
Measurement 
Uncertainty 

propene GC-MS Goldan et al. 1995 20 

ethyne GC-MS Goldan et al. 1995 20 

iso-butane GC-MS Goldan et al. 1995 20 

butane GC-MS Goldan et al. 1995 20 

iso-pentane GC-MS Goldan et al. 1995 20 

pentane GC-MS Goldan et al. 1995 20 

acetalaldehyde GC-MS Goldan et al. 1995 20 

methanol GC-MS Goldan et al. 1995 20 

ethanol GC-MS Goldan et al. 1995 20 

propanol GC-MS Goldan et al. 1995 20 

dimethyl sulfide GC-MS Goldan et al. 1995 20 

acetone GC-MS Goldan et al. 1995 20 

hexane GC-MS Goldan et al. 1995 20 

methacrolein GC-MS Goldan et al. 1995 20 

butanal GC-MS Goldan et al. 1995 20 

methyl vinyl ketone GC-MS Goldan et al. 1995 20 

butadione GC-MS Goldan et al. 1995 20 

methyl ethyl ketone GC-MS Goldan et al. 1995 20 

toluene GC-MS Goldan et al. 1995 20 

o-xylene GC-MS Goldan et al. 1995 20 

decane GC-MS Goldan et al. 1995 20 

temperature Resistance Detector 0.1 

relative humidity 
Hygromer Passive 

Filament 0.80 
boundary layer 

height LIDAR 13 
 

 

OH measurements were made using laser-induced fluorescence (Mao et al., 2012). 

Isoprene nitrates were measured using chemical ionization mass spectrometry utilizing 

iodide water clusters as the ionization agent (Lee et al., 2014a). The peroxy acyl nitrates, 

PAN, PPN, and MPAN were measured using a cooled GC-ECD (Bertman et al., 1993).  
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4.2.3 0-D Modeling 

A 0-D box model was constructed using the Master Chemical Mechanism (MCM) 

v3.2 (Saunders et al., 2003). A 0-D box model is an atmospheric chemical kinetic model 

that only looks the chemical processes occurring in the modeled area, in this case, the 

SOAS ground site. That means it cannot account for the dilution of clean air from aloft 

due to thermal mixing or advection (Chapter 1.2). FACSIMILE Kinetic Modeling 

software was used to compile and solve the differential equations found in the MCM. The 

model was run to simulate June 14th, June 26th, and July 12th. Thirty-four species, which 

are listed in Table 4.1, were constrained to observed concentrations. Isoprene chemistry 

was updated using the changes found in Xie et al. (2013), Peeters et al. (2014), and Xiong 

et al. (2015). All peroxy acyl nitrate formation and degradation rate constants were 

changed to IUPAC values (Atkinson et al., 2006). Myrcene and camphene chemistry was 

updated according to Wolfe and Thornton (2011) and their organic nitrate yield from OH 

chemistry was set as 23% as used in Pratt et al. (2012). In the Wolfe and Thornton (2011) 

paper, all of the isomers of myrcene nitrates were treated as a single isomer. Photolysis 

rate values were calculated using the Tropospheric Ultraviolet and Visible Radiation 

Model v4.4 (Madronich, 1992).   This model looks at primary organic nitrates (e.g. 

isoprene nitrates, α-pinene nitrates) and secondary organic nitrates (e.g. Methacrolein 

nitrate, pinonaldehyde nitrate) formation for simplicity. Deposition velocities for organic 

nitrates were set as 2.7 cm s-1 as calculated in Zhang et al. (2012) and Farmer and Cohen 

(2008). All organic nitrates were subject to the same deposition velocity for simplicity 

and a lack of known speciated deposition velocities. The deposition velocity of all peroxy 

acyl nitrates was set as 0.5 cm s-1 as measured by (Shepson et al., 1992). Deposition 
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velocities were divided by the boundary layer height to give a depositional loss rate. The 

depositional loss rate is used to simulate the irreversible loss of the nitrates to absorption 

or adsorption on ground level surfaces. In other 0-D models, a dilution loss rate from 

thermal mixing is generally added as an additional loss factor (Jacob et al., 1992). In this 

model, no dilution loss was added, and the reason will be discussed within. 

Initial values of the isoprene nitrates were set as 15 ppt, the diurnal average of 

isoprene nitrates at midnight during the SOAS campaign. The initial value of PAN was 

set as 110 ppt for each day, which was the average of PAN at midnight during the SOAS 

campaign. Initial values cannot be given to any summed values (RO2, summed isoprene 

nitrates, total O3 production) through the FACSIMILE software, and therefore, it is 

recommended that at least the first data point at midnight for each day run be ignored.  

To observe the production rates of organic nitrates, counters were added to the 

model. Counters are unique variables added to the end of reactions in the MCM, so that 

when the FACSIMILE software converged on a solution, each time a reaction with a 

counter occurred, the counter would increase. Counters were added for each type of 

reaction studied as shown in Figure 4.2.  
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Figure 4.2 Graphical representation of all counters used to identify organic nitrate 
production. The red arrows represent reactions with counters. 
 
 
 
Counters were added to all RO2 + NO reactions that yielded NO2, including HO2 + NO. 

Counters were added to all RO2 + NO reactions that yielded an organic nitrate (RONO2). 

Counters were added to all (RONO2) species formed from NO3 + BVOC chemistry that 

reacted with RO2 (including HO2) to form a stable organic nitrate.  

 Three days (June 14th, June 26th, and July 12th, 2013) where chosen to model due 

to large organic nitrate formation, relatively stable boundary layer (±200 m after full 

growth past 1200 each day), and a comprehensive data set for those days. To visualize 

the source and intensity of the prevailing winds for each day measured, wind rose plots 

for the three days studied are shown in Figure 4.3.  
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Figure  

Figure 4.3 Wind rose plots showing wind speed, direction, and frequency of direction for 
the days of June 14th (a), June 26th (b), and July 12th (c), 2013. 

 

 

 

 

a) 

b) 



151 
 

 

 

 

 

 

 

 

 
Figure 4.3 continued 
 
 
 
In the wind rose plots, the frequency of different wind speeds is plotted as a function of 

the direction from which they originated. Figure 4.3 shows that the prevailing winds are 

from the north northwest on June 14th and July 12th and from the southwest on June 26th. 

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was 

used to calculate the back trajectories of the air masses arriving at the site. The HYSPLIT 

model is a model that uses meteorological data to calculate the advection, or trajectory, of 

air parcels (Draxler and Rolph, 2014b). Twelve hour back trajectories show that the air 

mass that arrived at the site on June 26th traversed over the Gulf of Mexico and the 

greater New Orleans area. The 12 hour HYSPLIT back trajectories show that the air 

c) 
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masses that arrived at the site on June 14th and July 12th were influenced by forests in 

central Tennessee and northern Alabama. 

Boundary layer height for the days studied were measured by LIght Detection 

And Ranging (LIDAR) (Wang et al., 2012) and followed a general pattern. For all days, 

the boundary layer grew after sunrise and reached a near maximum near 1500 and varied 

by ~200 m during the afternoon until around 1800. Boundary layer heights for the three 

days can be seen in Figure 4.4. 

 

 

Figure 4.4 Boundary layer height development and growth during June 14th, June 26th, 
and July 12th, 2013. 
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4.3 Results and Discussion 

 

4.3.1 Measurements of BVOCs, NOx, NO3, OH, and O3 

 To begin to assess the chemical conditions that lead to organic nitrate formation, 

the main components of BVOC chemistry (the BVOCs and oxidants) are plotted in 

Figure 4.5. BVOC data was observed by a GC-MS run by Kevin Olson and Abigail Koss 

as part of a collaboration between Allen Goldstein’s group at the University of 

California-Berkeley and Joost de Gouw’s group at the National Oceanic and Atmospheric 

Administration. NO and NOx data are courtesy of the Karsten Baumann at Atmospheric 

Research and Analysis, Inc. Due to the very low concentrations of NO3 at the site, no 

observed data is available and all NO3 data here is modeled.  
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Figure 4.5 Observed OH, O3, NO, NO2, NO3, and BVOCs for June 14th (a), June 26th (b), 
and July 12th (c) during the SOAS campaign. 
 

a) 
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Figure 4.5 continued. 

b) 
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Figure 4.5 continued. 

c) 
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The monoterpenes, a-pinene, b-pinene, limonene, mycrene, and camphene, had 

maximum concentrations during the early morning and quickly decreased shortly after 

sunrise for all three days. Even though monoterpene emissions are temperature dependent 

(Guenther et al., 1993), dilution due to boundary layer growth and photochemical losses 

exceeded any additional emissions during the daytime. Isoprene had its lowest 

concentrations during the night since isoprene emissions are not only temperature 

dependent, but light dependent (Guenther et al., 1993). Isoprene emissions quickly rose 

after sunrise, peaking in the late afternoon for all three days. OH radical and O3 

concentrations were lowest during the early morning hours, and grew throughout the day, 

peaking in the afternoon.  

As shown in Figure 4.5, NO3 concentrations were the highest on June 14th with 

the highest concentrations in the early morning hours before sunrise and after sunset. NO3 

concentrations on June 26th and July 12th were low, and grew throughout the day. The 

primary means to form NO3 is from the reaction of NO2 and O3 as shown in reaction 

4.10. 

 

The pattern of NO3 for June 14th is to be expected as there was a large concentration of 

NO2 present in the early morning hours, and the concentrations of O3 and NO2 followed 

that pattern of NO3. The pattern of NO3 following NO2 also follows for June 26th and July 

12th at night, as a late evening rise in NO2 correlated with an increase in NO3. The gradual 

increase in NO3 during the day is currently unexplainable. Concentrations of NO3 were 

below the 1 ppt detection limit of a cavity-ring down spectrometer that attempted to 
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quantify NO3 at the site, and therefore, we have no observational data to compare 

modeled NO3. 

 

4.3.2 Model Evaluation 

To evaluate the accuracy of the model, the model was run to simulate June 14th, 

June 26th, and July 12th 2013 and the concentrations of observed and modeled isoprene 

nitrates and PAN are shown in Figure 4.6. Figure 4.6 shows that the model generally over 

predicts isoprene nitrates, but is in agreement with PAN concentrations. 

 

 

Figure 4.6 Comparison of modeled vs. measured isoprene nitrates and PAN for June 14th 
(a), June 26th (b), and July 12th, 2013 (c). There is no available measured isoprene nitrate 
data for July 12th. 
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Figure 4.6 continued. 
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 Since the 0-D model cannot account for dilution from thermal mixing, a better 

means of evaluating the accuracy of the model is by plotting the ratio of the 

concentrations methyl vinyl ketone (MVK) plus methacrolein (MACR) over the 

concentration of isoprene nitrates.  By plotting the ratio of the two first generation 

isoprene oxidation products, the dilution factor affecting the ground level concentration 

of the two species should cancel out. The GC-MS at the site measured MVK and MACR 

separately, but recent work by Rivera-Rios et al. (2014) has shown that GC-MS systems 

convert isoprene hydroperoxides (ISOPOOH) into MVK and MACR. This is a problem, 

as a CF3O- chemical ionization mass spectrometer run by Tran Nguyen and Alex Teng of 

Paul Wennberg’s group at the California Institute of Technology have reported that 

ISOPOOH concentrations at the SOAS site are between 20-300 ppt. MVK concentrations 

measured by the GC-MS averaged 614 ppt while MACR concentrations averaged 396 

ppt. This means that a significant unknown fraction of the MVK and MACR measured at 

the site could be due to ISOPOOH.  A better alternative is to use the summed 

concentrations of MVK and MACR measured by a PTR-MS run by Pawel Misztal (UC 

Berkeley) (de Gouw and Warneke, 2007). MVK and MACR are summed together 

because they are structural isomers and indistinguishable in the PTR-MS used at the site. 

Rivera-Rios et al. (2014) also showed that a fraction of ISOPOOHs are converted to 

MVK or MACR during the ionization process in PTR-MS instruments. However, 

sampling tests done by Pawel Misztal have shown the ISOPOOHs are unable to survive 

the sampling inlet and that upon injecting ISOPOOH standards at the inlet, no increase in 

concentrations of MVK and MACR were seen with the PTR-MS. This sampling test was 
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not performed on the GC-MS inlet, and therefore the PTR-MS data will be used for this 

evaluation.  

 Figure 4.7 shows the ratio of measured isoprene nitrates over the measured sum of 

MVK and MACR versus the ratio of modeled isoprene nitrates over the modeled sum of 

MVK and MACR.  

 

Figure 4.7 Ratio of the concentration of isoprene nitrates over MVK+MACR for the 
modeled and measured concentrations on June 26th, 2013.  
 
 

The modeled ratio was four times larger than the measured ratio. It is currently unknown 

why there is such a large difference in the two ratios. However, Xiong et al. (2015), 

which uses a variation of this model (only constrains the BVOCs and not the small VOCs 
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such as propene, acetone, methyl ethyl ketone, etc…) has shown that there are many days 

in which the modeled and measured ratios are similar. There are no MVK+MACR 

observed data for June 14th and there are no observed isoprene nitrate data for July 12th.  

 
 

4.3.3 Species contributing most to O3 Production 
 
 From reactions 4.4 through 4.9 (shown in intro), the oxidation of BVOCs by OH 

leads to production of peroxy radicals (reaction 4.4) and HO2 (reaction 4.7), that can then 

oxidize NO into NO2 (reactions 4.5 and 4.8, respectively). The photolysis of NO2 

(reaction 4.2) then leads to the production of O3. Overall, the production of O3 can be 

defined by equation 4.1 (Thornton et al., 2002).  

 
 
 The production of O3 as defined by equation 4.2 along with the speciated 

production of NO2 from HO2 + NO and VOC specific RO2 + NO reactions was plotted 

for the three modeled days in Figure 4.8.  
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Figure 4.8 Total O3 production plotted for the three modeled days, June 14th (a), June 26th 
(b), and July 12th (c), 2013. The individual BVOC derived RO2s plotted represent the 
summed peroxy radicals + NO  NO2 reactions of the parent BVOC indicated.  
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Figure 4.8 Continued. 

 

In the figure, the total production of O3 is the sum of reactions 4.5 and 4.8 as defined in 

equation 4.2.  Figure 4.8 shows that reaction 4.8 (HO2 + NO) is the dominant pathway 

leading to the production of O3 for all three days. Reaction 4.8 comprised 49%, 39%, and 

53% of the total O3 production for June 14th, 26th, and July 12th, respectively.  To identify 

the dominant BVOC leading to the production of O3, individual RO2 + NO  NO2 

reactions were summed for each BVOC (the rate of O3 production from α-pinene 

photooxidation shown in Figure 4.8 is the sum of the three peroxy radical isomers 

reacting with NO to form NO2). The peroxy radicals formed from the photooxidation of 

isoprene dominated the production of peroxy radicals at this site for the three days being 

studied. The formation of NO2 from the reaction of NO with the peroxy radicals created 

during isoprene OH oxidation comprised on average 30%, 34%, and 33% of the total O3 
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production from all RO2 + NO reactions for June 14th, 26th, and July 12th, respectively. 

During the time with large O3 production (0800-1800), the isoprene derived RO2 + NO 

reactions account for 59%, 52%, and 51% of the total RO2 + NO reactions that produce 

O3.  The oxidation of monoterpenes contributed to 10%, 13%, and 12% of the total O3 

production. Each day, ~50% of the total O3 production was due to the oxidation of 

second and further generation products (e.g. MVK and MACR) and other smaller volatile 

organic compounds such as ethyne.   

 

4.3.4 NOx Limited vs NOx Saturated Production of O3 

 From reactions 4.1 through 4.9, the rate-determining step among the propagation 

reactions is usually the reaction between NO and HO2 (reaction 4.6) or RO2 (reaction 4.8) 

(Thornton et al., 2002). When NOx concentrations are low and peroxy radical 

concentrations (HO2 + RO2) are high, the primary chain terminating step of the HOx 

catalytic cycle are the HOx + HOx reactions shown in reactions 4.10 through 4.12 

(Sillman et al., 1990).  

 

O3 production in low NOx conditions is called NOx-limited and the O3 production rate 

increases approximately linearly with increases in the concentration of NOx. When NOx 

concentrations are high, radical termination can occur from the reaction of OH with NO2 

(reaction 4.9) and through production of organic nitrates (reaction 4.6). At 150 ppt (Xie et 

al. 2013) of NO, reactions 4.6 and 4.9 become faster than the HOx-HOx reactions (4.11 
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and 4.12) and the O3 production begins to slow. This region is called either NOx-saturated 

or BVOC limited (Thornton et al. 2002). Thus in this condition, increasing VOC 

concentrations does not increase the rate of O3 production. This is critical to 

understanding the future of global ground level background O3 concentrations. Increases 

in global temperature will cause increases in BVOC emissions by ~30-45% (Penuelas 

and Llusia, 2003) and overall global anthropogenic NOx emissions are increasing, mainly 

due to economic growth in Asia (Lamsal et al., 2011). Knowing which geographical 

regions are NOx limited and NOx saturated will help better predict future regional climate 

change. 

The southeastern United States represents a unique photochemical environment as 

BVOC emissions in the region rival those of tropical forests (Geron et al., 1994; 

Guenther et al., 2000). Tropical forests such as those in the Amazon have been 

determined to be NOx limited regimes, and future warming will not dramatically increase 

O3 production due to the very limited NOx concentrations present in remote rainforests 

(Bela et al., 2015). The southeastern United States is rare in that there are significant 

anthropogenic sources of NOx that react with the BVOC derived RO2 radicals (Goldstein 

et al., 2009). To determine if the SOAS site was NOx limited or NOx saturated, the 

production rate of O3 as defined by Equation 4.2 was plotted against the concentration of 

NO, as shown in Figure 4.9. 
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Figure 4.9 Production of O3 (ppt/s) plotted against concentration of NO (ppt). 

 

It is difficult to determine the region in which NO concentrations transfer from NOx-

limited to NOx-saturated due to a limited number of NO observations above 200 ppt. The 

average concentration of NO during the campaign was 100 ppt and the standard deviation 

was also 100 ppt. This means there is limited spread of the data and that 95% of the time 

during the campaign, the concentration of NO was below 300 ppt. Figure 4.9 shows that 

most NO concentrations were between 0-200 ppt. Xie et al. (2013) found that in the 

southeastern United States, the NOx limited to NOx saturated regime was ~150 ppt. The 

data presented in Figure 4.9 are mostly indicative of a NOx limited regime.   
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4.3.5 Speciated Organic Nitrates vs Total Organic Nitrates 

 To determine the extent to which organic nitrate production effects O3 production, 

the 0-D chemical model was used to determine the instantaneous RONO2 production rate 

for all BVOCs shown in Table 4.1. While much of the research on organic nitrates has 

focused on isoprene nitrates, there has been very little research into the impact of other 

organic nitrates, including monoterpene nitrates and nitrates formed from the oxidation of 

second generation oxidation products of isoprene (Browne et al., 2014; Paulot et al., 

2009; Pratt et al., 2012). To simplify the output for organic nitrate production, the 

isomeric nitrates produced from each BVOC were summed. The individual isomers and 

which category, along with common descriptions, either in literature or the MCM model, 

are shown in Figure 4.10. 
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Figure 4.10 Skeletal structure of organic nitrates and the category into which they were 
summed. 
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Figure 4.10 continued. 
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Figure 4.10 continued. 
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Figure 4.10 continued. 
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To identify which BVOCs produce the most organic nitrates, the production rate of the 

isomers of each BVOC species were summed (e.g. isoprene nitrate is the summation of 

the eight isoprene nitrate (C5H10NO4) isomers) and are shown in Figure 4.11. The 

production rates shown in Figure 4.11 are a combination of the organic nitrates formed 

from photochemistry and NO3 chemistry, as both act a means to removing NOx from the 

troposphere. 

 

 

Figure 4.11 Plot of total organic nitrate production rate along with which BVOCs 
contribute most to the total production for June 14th (a), June 26th (b), and July 12th (c). 
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Figure 4.11 continued. 
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 Figure 4.11 shows that for the three days studied, the production of the summed 

monoterpene nitrates dominated the production of total organic nitrates during the late 

evening and early morning hours (~2100-1000). Isoprene emissions, which are dependent 

on radiation and temperature (Guenther et al., 1993) began to rise in the early morning 

hours. Isoprene nitrate production dominated during the day, peaking in the early 

morning for June 14th, and in the late afternoon for June 26th and July 12th.  

 To better understand the impact of second generation organic nitrates, the 

individual and summed second generation organic nitrate production rate was plotted and 

is shown in Figure 4.12. Second generation organic nitrates are produced from two 

different sources. The first is from the BVOC+OH+NO oxidation when the BVOC is the 

product of the primary BVOC (e.g. isoprene, α-pinene, and limonene) + OH chemistry. 

The other source of secondary organic nitrates is from the oxidation of primary organic 

nitrates (e.g. isoprene nitrates, α-pinene nitrates, limonene nitrates).  
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Figure 4.12 Comparison of the production of first and second generation organic nitrates 
for June 14th (a), June 26th (b), and July 12th (c). 
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Figure 4.12 continued. 

 

Figure 4.12 shows that while there is a significant primary monoterpene nitrate 

production, the production of second generation organic nitrates from isoprene rival 

primary monoterpene nitrate production during the afternoon for all three days. On 

average, for the three days, the production of organic nitrates from second generation 

isoprene products contributed to 8% of the total organic nitrate production. Second 

generation organic nitrates from monoterpenes are low during the day, and significant 

during the early morning (0000-0600) hours. On average, for the three days, the 

production of second generation organic nitrates from monoterpenes contributes to 6% of 

the total organic nitrate production.   
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Monoterpene nitrate formation has become a recent area of study due to the better 

understanding of isoprene chemistry (Browne et al. 2014). The presence of monoterpene 

nitrates over areas where monoterpene emissions are dominant, such as a boreal forest in 

Canada (Browne et al. 2013) or the forests over the western United States (MacKenzie et 

al. 2011), has been shown. Even in a forest that is a large isoprene emitter, monoterpene 

nitrates have been shown to have an effect on the oxidizing capacity of the atmosphere. 

The dominance of monoterpene nitrates in a forest in the early morning has been 

observed before in Pratt et al. (2012), who stated monoterpene nitrate production in the 

early morning hours accounts for ~80% of the total organic nitrate production. In this 

study we find that on average, 61% of early morning hour organic nitrate production is 

from monoterpene nitrate production for the three days studied. After sunset (~1900), 

isoprene nitrate production steeply declined for June 26th and July 12th, but remained high 

for June 14th, and monoterpene nitrates began to exhibit larger production rates towards 

the end of the day. 

From Figure 4.11 and 4.12, on average 61% of the total organic nitrate production 

budget for the 3 days studied here comes from the production of monoterpene nitrates 

during the morning (midnight to just before sunrise for each day). During the afternoon 

and after sunset, monoterpene nitrates still contributed on average to 24% and 51% of the 

total organic nitrate budget, respectively. Figure 4.8 shows that the photo-oxidation of 

monoterpenes only contributes to on average, 7% of the total O3 production total. Figure 

4.13 shows the speciated monoterpene organic nitrate production in greater detail.  
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Figure 4.13 Total monoterpene nitrate production as compared to individual monoterpene 
nitrate production for June 14th (a), June 26th (b), and July 12th (c). 
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Figure 4.13 continued. 

 

Figure 4.13 shows that even though α-pinene and β-pinene are the dominant organic 

nitrate precursors among monoterpenes found at this site, the production of limonene 

nitrates is comparable during periods with no radiation, and greater than α-pinene and β-

pinene on June 14th and June 26th, and very similar to α-pinene on July 12th. Limonene is 

found at concentrations 2-3 times lower than α-pinene, however the OH + limonene rate 

constant is 3 times greater than the α-pinene + OH and the NO3 + limonene rate constant 

is 2 times greater than the α-pinene + NO3 rate constant. The camphene + NO3 rate 

constant is 11 times larger than α-pinene + NO3 and the reaction with OH has similar rate 

constants (5.33 x 10-11 and 5.31 x 10-11 for camphene and α-pinene, respectively) 

(Atkinson et al. 2003). Since camphene concentrations were ~97% lower than α-pinene 
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or β-pinene emissions, their contribution to total organic nitrate production was minimal 

as shown in Figure 4.13. Future studies of monoterpene nitrates should focus not only on 

the fates of α-pinene nitrates and β-pinene nitrates, but on limonene nitrates.  

 

4.3.6 Photochemically Produced Nitrates vs. NO3 Produced Nitrates 

 The impact of organic nitrates not only depends on the photochemistry, but on 

NO3 chemistry, which occurs during night times, but also during the day. NO3 chemistry 

also plays an important role in influencing daytime photochemistry (Brown and Stutz, 

2012). Penkett et al. (1993) have shown that NO3 more efficiently removes unsaturated 

hydrocarbons from the troposphere than OH on regional scales. NO3 chemistry effects 

the NOx cycle, as Stutz et al. (2010) have shown that up to 50% of emitted NOx 

throughout a 24 hour period in urban areas can be removed through nocturnal processing. 

In order to understand the importance of NO3 chemistry, the organic nitrates formed from 

NO3 chemistry were separated from those formed during OH initiated oxidation.  

To show the importance of second generation nitrates from isoprene and 

monoterpene nitrates, the production of the two classes of nitrates was separated into NO3 

produced organic nitrate and photochemically produced nitrate and is shown in Figure 

4.14.  
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Figure 4.14 Comparison of total organic nitrate production and the fraction of organic 
nitrate formed from BVOC + NO3 chemistry for June 14th (a), June 26th (b), and July 12th 
(c). 
 



183 
 

 

Figure 4.14 continued. 
 
 
 

Figure 4.14 shows that for June 14th, 96% of the total organic nitrate produced is 

formed from NO3 chemistry in the early morning hours (before sunset), 26% during the 

day (when radiation was present), and near 87% during the late evening (between sunset 

and midnight). The rate of organic nitrate production from BVOC + NO3 chemistry is 

much lower on June 26th and July 12th, with 11% and 14% of organic nitrate production 

from NO3 + BVOC chemistry. This is most likely due to the lower NO3 values on these 

two days, as shown in Figure 4.5. 

 It has been shown in Pratt et al. (2012) that even during the day ~8% of organic 

nitrate production was from isoprene + NO3 chemistry. NO3 + monoterpene chemistry 

has received attention because monoterpenes emissions are usually only temperature 
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dependent, and are therefore emitted at night (Fry et al., 2014; Guenther et al., 1993). The 

large production of organic nitrate from NO3 chemistry, even during the day, is explained 

by the large organic nitrate yield from BVOC + NO3 chemistry. While the organic nitrate 

yield for isoprene photochemistry in the presence of NOx has a yield between 4% 

(Horowitz et al., 2007) and 14% (Lee et al., 2014b), studies have shown that isoprene + 

NO3 has an ~80% product yield of organic nitrates (Perring et al., 2009b). This very large 

yield difference between the two pathways is not always seen in monoterpene chemistry, 

where a-pinene + OH + NO  produces between 18%-26% organic nitrates (Rindelaub et 

al., 2015) and a-pinene + NO3 chemistry produces 20% organic nitrate (Spittler et al. 

2006). However, β-pinene + OH produces 23% organic nitrate while β-pinene + NO3 

chemistry produces 43% organic nitrate (Fry et al. 2009). This shows that NO3 chemistry 

may have a large influence on ozone production, as ~50% of nocturnal NOx can be 

sequestered through this reaction, assuming there is no NOx recycling from further 

oxidation (Stutz et al., 2010). This assumption is made on the fact that the dominant 

monoterpene nitrates observed (α-pinene and β-pinene nitrate) are unable to undergo 

ozonolysis, NO3, or OH reaction, due to the lack of an available double bond. Ozonolysis 

is a high energy oxidation, and the most likely means to removing NOx from an organic 

nitrate.  

One large uncertainty of the model that is not well understood is a parameter 

called the NOx recycling efficiency. The NOx recycling efficiency of an organic nitrate is 

the amount of NO2 released when oxidation by OH, O3, or NO3 occurs. Figure 4.15 

shows an example of this problem. 
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Figure 4.15 Example of NOx being released during the OH oxidation of an isoprene 
nitrate.  
 
 
 
In the model, the NOx recycling efficiency of isoprene nitrates is set at 50% as described 

in (Paulot et al., 2009). The NOx recycling efficiency of the monoterpene and second 

generation organic nitrates is set at 0%. The problem with these numbers is that it they 

have not been experimentally measured. This measurement is critical to understanding 

the impact of organic nitrates on ozone production, as it determines which organic 

nitrates are permanent reservoirs of NOx (whose ultimate fate is deposition to surfaces), 

or temporary reservoirs of NOx (nitrates that release NOx upon further oxidation). This 
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problem is currently being addressed experimentally in the Shepson Lab and through 

models of the SOAS data by Ron Cohen’s group at the University of California Berkeley. 

 

4.3.7 Effect of Organic Nitrate Production on Ozone Production 

 From Figure 4.11, isoprene is the dominant BVOC contributing to organic nitrate 

formation during the daytime (during maximum O3 production as shown in figure 4.8) 

and monoterpene nitrates, specifically a-pinene, b-pinene, and limonene nitrates, are the 

dominant nitrate formed when radiation was not present. To understand the effect of 

organic nitrate formation on the traditional ozone production definition (Equation 4.1), 

we eliminated all organic nitrate production to observe the difference in ozone 

production. From this analysis, the production of organic nitrates reduced ozone 

production by 4.2% for June 14th, 6.9% for June 26th, and 4.4% for July 12th. This gives 

an average of 5.2 ± 1.5%. Wu et al. (2007) found that by increasing the yield of isoprene 

nitrates from 4% to 12% would result in a 10% decrease in the concentration of O3 

worldwide. The updated 0-D model used in this study has the isoprene nitrate yield at 

11% (Xiong et al., 2015). By removing the 11% isoprene nitrate yield, along with the 

production of all the other nitrates, we could not get numbers similar to the Wu et al. 

(2007). This means a further study into the fate of NOx at the SOAS site is needed. This 

study is currently being done by Paul Rommer of Ron Cohen’s group at the University of 

California Berkeley. 
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4.4 Conclusions 

 This work shows illustrates the effect of organic nitrate formation on the 

production of O3. Isoprene is the most important BVOC precursor for organic nitrate 

production and is responsible for on average 44% of the total organic nitrate budget per 

day. The sum of the production of monoterpene nitrates rivals the production of isoprene 

nitrates. The production of monoterpene nitrates contributing to, on average, 31% of the 

total organic nitrate budget, with a-pinene (12%), b-pinene (7.9%), and limonene (8.8%) 

being the dominant RONO2 precursors among the monoterpenes. While the 

photochemical production of organic nitrates dominates the production of organic 

nitrates, there is a significant fraction of organic nitrates formed from NO3 + BVOC 

chemistry, and future work on organic nitrate production should include a better 

understanding of branching ratio differences along with determining the fate of organic 

nitrates and their role in the NOx cycle. 
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CHAPTRER 5 CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

 The research presented in this dissertation has provided new insights into the 

location, magnitude, and effect of tropospheric NOx chemistry at two rural forested sites. 

The first and second configurations of the comprehensive two-dimensional gas 

chromatography (GCxGC) system offers a clear advantage over traditional one-

dimensional gas chromatography in separation power and demonstrated in this thesis is 

the ability to sample and analyze atmospheric samples in field conditions. Configuration 

three had poor injections into the GCxGC system and made the characteristics of the 

system (e.g. resolution, limit of detection, peak capacity) comparable to a GC-MS. There 

is still work needed to better understand NOx-BVOC chemistry, including better 

measurement techniques, the synthesis of known standards, and more sampling locations. 

 Presented in this research are the results of two field campaigns. The first 

demonstrated that early morning spikes in the concentrations of NOx appear to be due to 

the break-up of the nocturnal boundary layer, and that the downward transport of polluted 

air from aloft towards the forest canopy plays a role in the early morning NOx peaks. It 

was also shown that there is significantly different chemistry occurring below and above 

the canopy during the night. There was a significantly higher concentration of NOx above 

the canopy compared to observations in-canopy and below the canopy during times when 
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turbulence was low. No biogenic volatile organic compound (BVOC) measurements 

were made below and above the canopy, and therefore, the chemistry of the difference 

between the two sampling sites is unknown. There could be significant NO3+BVOC 

reactions (Chapter 1.5.3) occurring within and below the canopy, however, no NO3 or 

BVOC measurements were made at any height during our field campaign. 

 A sampling system for a comprehensive flow modulated two-dimensional gas 

chromatography instrument was developed. The use of a two-trap system was able to 

concentrate semi-volatile species (species with a carbon number greater than 10 including 

monoterpenes and sesquiterpenes) into the GCxGC system. The use of a cryofocuser was 

able to effectively trap highly volatile species (species with a carbon number of 4 and 

greater), but was not ideal for long term ambient monitoring. Water vapor damaged most 

of the cooling elements during field deployments and a redesign of the cryofocuser, or 

entire trap system, is needed to minimize water damage. A field modified single trap 

system was used to obtain monoterpene measurements during the 2013 Southern Oxidant 

and Aerosol Study. 

 Modeled concentrations of organic nitrates, important NOx reservoirs, were made 

for the Southern Oxidant and Aerosol Study. The impact of these species on ozone 

production was determined and agree with previous measurements and models of the 

southeastern United States. It was found that limonene nitrates are more prevalent than α-

pinene and β-pinene nitrates during the daytime, and this is due to limonene reacting 

faster with NO3 and OH radicals. It was also found that the organic nitrates from the 

second generation isoprene oxidation products methyl vinyl ketone (MVK) and 

methacrolein (MACR) were produced at a similar rate as monoterpene nitrates during 
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peak O3 production times. These two findings cannot be compared to observations at 

SOAS. This is because there are no known analytical standards for methyl vinyl ketone 

nitrates or methacrolein nitrates. The speciation of monoterpene nitrates has not been 

performed in the field or in a laboratory environment. Recently, this lab has synthesized 

an α-pinene nitrate (Rindelaub et al., 2015), but standards of β-pinene nitrates and 

limonene nitrates are not currently available. There is also no current method for the 

separation and detection of monoterpene nitrates. 

 

5.2 Future Instrumentation Work 

 There have been considerable improvements in the field of analytical 

instrumentation for the study the effect of NOx on tropospheric chemistry in the past 60 

years. New techniques have been invented to measure the total mixing ratio of peroxy 

acyl nitrates and organic nitrates (Day et al., 2002). Advancements in GCxGC and OH 

measurements have increased our knowledge of the vast number of BVOCs and their 

oxidation pathways (Hamilton, 2010b; Mao et al., 2012). Most of the field of analytical 

atmospheric chemistry is heavily set on expanding the potential of chemical ionization 

mass spectrometry (CIMS) to identify new oxidation products of tropospheric BVOC 

chemistry (Beaver et al., 2012; Ehn et al., 2014b; Huey, 2007; Lee et al., 2014a; Paulot et 

al., 2009). This field will continue as new atmospherically relevant species are identified, 

and the chemical pathways in which BVOCs proceed are identified including organic 

nitrates and their speciation (Lee et al., 2014b; Nguyen et al., 2011). Riveria-Rios et al. 

(2014) have recently shown that isoprene hydroperoxide compounds decompose into 

MVK and MACR inside GC and proton-transfer mass spectrometry (PTR-MS) 
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instruments. As shown at SOAS, the concentration of isoprene hydroperoxides are 

between 20-300  ppt, which is a significant fraction of the total MVK and MACR 

concentrations, which averaged 614 and 396 ppt, respectively. This means the main 

oxidation products of isoprene, MVK and MACR, may not be as dominant a pathway as 

previously believed.  

 One area of research that is needed is the rapid quantification of isomers in the 

field to obtain flux measurements. GCxGC is an excellent technique for the separation of 

small chain alkanes, alkenes, alkynes, and mono-oxygenated BVOCs, but similar to one-

dimensional gas chromatography systems, suffers from drastic loss of multi-functional 

and liable species, such as hydroperoxides (Hallquist et al., 2009) and a does not have the 

time resolution needed for flux measurements. However, there is room for improvement 

in the field of GCxGC. Identified compounds from traditional chromatography and mass 

spectrometry have only accounted for less than an estimated 20% of the total organics in 

aerosols (Williams et al., 2006). To address the problem of sample loss during analysis, 

different sampling methods are needed to address these issues. The ideal sampling system 

would need to have the analyte have minimal surface contact during quantification to 

reduce depositional losses, have a detection system with a limit-of-detection that requires 

no pre-concentration, and have the ability to quantify any species found in the 

atmosphere, which encompasses a currently unknown large volatility and polarity range. 

 Future work in the field of atmospheric GCxGC should focus on method 

development for difficult to detect compounds. Traditional GC-ECD measurements for 

peroxy acyl nitrates species requires the use cold (~15º C) ovens (Bertman et al., 1993). 

Organic nitrates (RONO2) have been shown to thermally degrade at ~150º C (Hiskey et 
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al., 1991). Using our temperature and transfer time (200º C and a transfer time of 10 

minutes for trap to trap, trap to cryofocuser, and/or trap to GCxGC), 79% of nitrate ester 

bonds are thermally degraded inside the trap (Hiskey et al., 1991).  Future work into 

GCxGC instrumentation should focus on testing sorbent materials (PDMA, carboxen, 

etc..) with synthesized standards of organic nitrates (Lee et al., 2014b; Lockwood et al., 

2010) at low temperatures (<150º C) to find a possible means of concentrating and 

focusing ambient samples for injection into a GCxGC system.  

The main difficulty in this method development is finding a suitable pre-

concentration technique. The use of cryofocusers, such as the one described in Goldan et 

al. (1995), require large amounts of cryogens. A sorbent material that can effectively trap 

BVOCs with a wide range volatilities and polarities and subsequently release them with a 

low amount of heat has not been developed. The ideal trap should consist of multiple 

sorbent materials. The first sorbent material should be polydimethylsiloxane (PDMS). 

PDMS is an inert material that does not retain water, but thermally degrades and causes 

large artifact peaks (Baltussen et al., 1999). It is also subject to loss of high volatility 

compounds (Dettmer and Engewald, 2002). Therefore, a second higher adsorbent 

strength should be used in series with the PDMS. The second sorbent material used for 

the trap should be made of multiple graphitized black carbon (GBC) sorbent materials, 

such as Carbopack B described in Chapter 3.2.2 or Carbopack X. Graphitized black 

carbon has a very low affinity for water and has been shown to be able to pre-concentrate 

C3 to greater than C20 compounds (Dettmer and Engewald, 2002). However, these 

sorbents have a low affinity for compounds with a high polarity, but produce no known 

artifact signals (Dettmer and Engewald, 2002). The high polarity compounds should be 
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adsorbed to the PDMS before entering the GCB sorbent material. The combination of 

PDMS and GCB should offer a pre-concentration system that has limited water 

interference, limited artifact signal, a high affinity for both low and high polarity 

compounds, and a high affinity for compounds with either a high or low vapor pressure. 

 

5.3 Future Field Work 

This thesis has shown that night time measurements of NOx below and above the 

canopy are vastly different, and that the chemistry occurring below a forest canopy in 

northern Michigan is highly uncertain. Vertical profile measurements of NOx show that 

there is a measureable difference between above canopy and below canopy NOx 

concentrations. There have been a many field campaigns that have measured the flux of 

NOx (Farmer et al., 2006; Kitzler et al., 2006; Farmer et al., 2008; Filippia et al., 2009; 

Min et al., 2014).  Flux measurements of NOx in the Amazonian rain forest by Rummel et 

al. (2002) found that soil emissions of NO are significantly larger at night than during the 

day. Flux measurements below and above the canopy performed by Min et al. (2014) 

found that the NOx canopy reduction factor (Chapter 2.1 and 2.3.6) for the Blodgett forest 

in Northern California was ~50%.   

However, there are still significant gaps in our understanding of NOx sources and 

sinks, as these studies only represent a fraction of the total biosphere. One of the main 

challenges in understanding NOx chemistry is the lack of direct measurements, both 

temporally and spatially (Geddes and Murphy, 2014). Most direct NOx measurements are 

taken over a short time period (~1 to 2 months) at specific sites that may or may not 

represent the region in which they are located.  There is also a large uncertainty in the 
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NOx compensation point, the point at which trees become NOx sinks or NOx sources 

(Conrad, 1996; Raivonen et al., 2009). This value been measured to be between 0.2 and 3 

ppb in forest environments, which encompasses the typical range of rural NOx 

concentrations (Lerdau et al., 2000). There is a great need for not only accurate flux 

measurements of NOx within canopies, but a need for the parameters which govern the 

biological functions of trees (e.g. fixed nitrogen availability, rainfall). 

One of the largest uncertainties in NOx chemistry is the lack of understanding the 

vertical concentration gradients of NOx and other BVOCs from below the canopy to the 

top of the boundary layer. Recent work by Min et al. (2014) found significant in-canopy 

NOx chemistry that was responsible for sequestering NOx before it reached a canopy 

height of 8 m. Work by Goldstein et al. (2004), Hu et al. (2013), and Wolfe et al. (2011) 

have all shown that in-canopy chemical processes have a significant effect on the 

composition of the troposphere. This chemistry may be significantly different, as the 

proposed BVOCs that exist with-in the canopy and not outside of the canopy are thought 

to be sesquiterpenes and very reactive monoterpenes, such as ocimene (Wolfe et al., 

2013; Min et al., 2014). These compounds, including their oxidation product speciation 

and yields, are not as well studied as those of isoprene and the monoterpenes α-pinene 

and β-pinene. Understanding the chemistry and processes that occur within the canopy is 

the next step in understanding discrepancies between modeled vs measured O3 (Wu et al., 

2007) and SOA (Goldstein and Galbally, 2007; Hallquist et al., 2009) concentrations.  

To better understand in-canopy chemical and physical processes, future field 

campaigns need to focus on simultaneous flux measurements of NOx, O3, and BVOCs 

below, within, and above the canopy. As shown in this work, measurements of within and 
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above canopy measurements need to be taken in time periods under the canopy transport 

time of near 100 s (Min et al., 2014). The ideal field campaign to study NOx-BVOC 

chemistry would require multiple instruments, including multiple GCxGCs, OH-LIF 

instruments, O3 monitors, chemiluminescent NOx instruments, and cavity ring down 

spectrometers (for measuring NO3). This study would address the question, what 

compounds are causing NOx removal below the canopy, and how are these compounds 

removing NOx from below the canopy. Multiple GCxGCs could identify the specific 

BVOCs that exist above and below the canopy. Pratt et al. (2012) found that the 

monoterpenes ocimene and γ-terpinene should be large organic nitrate precursors based 

on leaf-level emissions. However, there are very few quantitative measurements of 

ocimene above the forest canopy. There would have to be multiple instruments 

simultaneously measuring above and below the canopy to fully understand the 

knowledge gap between in-canopy and above-canopy chemistry. 

 

5.4 Future Laboratory Studies 

 One of the major limitations in understanding NOx and BVOC chemistry is the 

lack of analytical grade (greater than 95% purity) standards. From Chapter 4, limonene 

nitrates are modeled to be an important fraction of the total monoterpene nitrates. There 

is currently a reaction to create α-pinene nitrates as described in Rindelaub et al. (2015). 

Limonene nitrates could be synthesized in a similar fashion as shown in reaction 5.1. 
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Figure 5.1 Proposed synthetic pathway for limonene nitrates. 

 

Other possible reagents that can be used to open the epoxide ring could include HNO3  or 

TlNO3 (Mincione and Lanciano, 1980). With synthesized standards of new 

atmospherically relevant compounds (e.g. organic nitrates, hydroperoxides, alcohols), 

actual rate constants, product yields, and product analysis can be performed. This would 

be helpful, and would help replace the large amount of rate constants and product 

speciated predicted by structure activity relationships that are used in the Master 

Chemical Mechanism.  
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Abstract 

 During the 1998, 2000, 2001, 2008, 2009, and 2012 summer intensives of the 

Program Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), 

ambient measurements of nitrogen oxides (NO + NO2 = NOx) were conducted. NO and 

NOxmole fractions displayed a diurnal pattern with NOx frequently highest in the early 

morning. This pattern has often been observed in other rural areas. In this paper, we 

discussthe potential sources of the frequently observed morning pulse of NO and NOx, 

and the potential role of various contributing factors, (i.e. downward mixing, soil and 

canopy emissions, local pollution, and long range transport) through multiple height 

measurements, flux measurements, and measurements of other trace gases including CO 

and volatile organic compounds. We find that the behavior of the NOx in the early 

morning hours represents multiple phenomena related to the thermodynamic stability in 

the nocturnal boundary layer (NBL). We find that the downward transport of NOx 

significantly contributes to rises in early morning NOx mole ratios.   

 

Introduction 

 A wide variety of environmental and health impacts result from the emission of  

NOx (NO + NO2) into the atmosphere, including acidic deposition (Galloway et al. 2008), 
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stimulation of forest growth (Ollinger et al. 2002, Magnani et al. 2007, Lockwood et al. 

2008, Costa et al. 2011) including a potentially strong impact on the atmospheric CO2 

"fertilization effect" (Norby et al. 2010), production of ozone, and altering (indirectly and 

directly) atmospheric aerosol concentrations(Hallquist et al. 2009).  Continental 

atmospheric boundary layer environments typically have NOx concentrations of 1-3 ppb 

(Parrish et al. 1993, Thornberry et al. 2001), while clean, remote locations have very low 

NOx concentrations ranging between 4 and 50 ppt(Kondo et al. 1996).  NOxregulates 

photochemical production of tropospheric ozone, and hydroxyl and peroxy radical 

concentrations directly and indirectly (Lin, Trainer, and Liu 1988, Thompson 1992, 

Ridley et al. 1992, Thornton et al. 2002).  When nitric oxide (NO) is converted to 

nitrogen dioxide (NO2) by oxidants other than ozone, such as hydroperoxyl radicals 

(HO2) or organic peroxy radicals (RO2), a net photochemical production of ozone results 

(Ridley et al. 1992, Thornton et al. 2002). NOx chemistry, in the presence of other species 

such as biogenic volatile organic compounds (BVOCs)(Rollins et al. 2010), 

NH3(Dentener and Crutzen 1994), and humidity produces nitric acid and aerosol. Thus, 

through connection to ozone and aerosol production, and through impacts on the carbon 

cycle, nitrogen chemistry is linked to changes in climate.  Understanding the sources and 

fate of NOx and the distribution of odd nitrogen species is important for quantifying 

human impacts on both atmospheric composition and climate.  

 There is still a large uncertainty in the determination of the sources, sinks, and 

chemistry of NOx due to the complex chemistry and dynamics of the sources and sinks 

and a lack of direct observations (Geddes and Murphy 2014). Due to the differences 

between observed NOx concentrations below the canopy and O3 concentrations above the 
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canopy, many large scale models impose an ad-hoc canopy reduction factor which has 

been seen in field studies(Jacob and Wofsy 1990, Yienger and Levy 1995, Wang and 

Leuning 1998, Fang and Mu 2006). Alternatively, studies have shown that leaf surfaces 

can either act as a NOx source or sink, depending on whether ambient concentrations of 

NOx reach a compensation point (Conrad 1996).  Compensation points have been shown 

to range between 0.1-3 ppb (Sparks et al. 2001, Raivonen et al. 2009, Breuninger et al. 

2012, Chapparo-Suarez, Meixner, and Kesselmeier 2011). Along with the limited 

understanding of the biogeochemical process which produce or consume NOx, much 

uncertainty remains in the chemical processing of NOx, including the formation and fate 

of organic nitrates in the boundary layer (Paulot et al. 2009, Lockwood et al. 2010, Mao 

et al. 2013).To better understand the chemistry, biological, and meteorological 

phenomena controlling NOx concentrations, methods such as measurements at multiple 

heights (discussed within), flux measurements of NOy (NO + NO2 + NO3 + HONO + 

HNO3 + all other oxidized nitrogen species) (Turnipseed et al. 2006, Wolfe et al. 2009, 

Min et al. 2012), and development and use of instrumentation for NOx flux measurements 

(Farmer, Wooldridge, and Cohen 2006, Min et al. 2014) have been recently developed. 

Since 1997 we have been conducting measurements of NOx, O3, VOCs, and 

radicals as part of the Program for Research on Oxidants: PHotochemistry, Emissions 

and Transport (PROPHET)) at the University of Michigan Biological Station (UMBS), 

situated near the tip of the Michigan lower peninsula in a mixed deciduous/coniferous 

forest site(Carroll, Shepson, and Bertman 2001).  At this site, a morning NOx peak at the 

sampling location above the forest canopy is routinely observed as shown in Figure 1.  A 

morning NOx peak has been observed at other surface sites that are removed from 
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anthropogenic sources(Martin et al. 1991, Parrish et al. 1993, Thornberry et al. 2001).  

Parrish et al. (1993) reported that the [NO]/[NOy] peaked in the early morning when 

NO2photo-dissociated rapidly.  Thornberry et al. (2001) hypothesized that during the 

breakup of the nocturnal boundary layer (NBL) in the morning, air aloft is mixed down 

to the surface, resulting in an increase of NOx at the surface for sites such as PROPHET, 

where local emissions are small.  Day et al. (2009) observed and explained a morning 

NOx peak as resulting from the break-up of the NBL and downward mixing of air from 

the residual layer.  However, this hypothesis does not always explain the PROPHET 

observations, since the morning NOx peak often starts before sunrise. (i.e. well before 

the NBL breakup).  In addition, there are some cases during which turbulence data do 

not support interpretation of the morning NOx peak via downward mixing of polluted air 

to the surface.  There are a number of possible contributors to the observed morning 

NOx peak, including:  photolysis of highly photo-labile substance that have deposited 

onto the canopy during nighttime (Zhou et al. 2011); downward mixing of polluted air 

from the residual layer to the surface when the NBL breaks up(Day et al. 2009), local 

scale combustion, long-range transport of polluted air, and soil NOx emissions(Conrad 

1996, Ganzeveld et al. 2006).  Here, we set out to evaluate these possibilities to identify 

the underlying cause of this phenomenon and discuss the supporting data and 

implications.  This study leverages a range of observations from the UMBS PROPHET 

tower site (Carroll, Shepson, and Bertman 2001)situated near the tip of the Michigan 

lower peninsula in a mixed deciduous/coniferous forest site. 
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Experimental 

Field studies with relevant and supporting data were conducted in the summers of 

1998, 2000, 2001, 2008, 2009, and 2012 at the PROPHET measurement site (Carroll, 

Shepson, and Bertman 2001). This site consists of a 31.5 m tall scaffolding tower located 

in a rural mixed deciduous/coniferous forested area near the northern tip of the lower 

peninsula of Michigan (45.559°N, 84.715°W).  The typical canopy height is ~22m and is 

dominated by aspen, with some maple, oak, birch, beech and a successional undergrowth 

of white pine (Gough et al. 2007).  A range of measurements of NOx, NOy, PAN, O3, 

aerosol, CO, VOCs, radiation, temperature and wind speed/direction are available to aid 

in the pursuit of this issue.  Most instrumentation was located in the PROPHET 

laboratory building at the base of the tower.  For most instruments air was sampled from 

a port on the lowest segment of the common 5 cm ID Pyrex manifold that drew air from a 

height of 35 m into the laboratory building at the base of the tower with a residence time 

of < 2 s (Carroll, Shepson, and Bertman 2001).   

In 2008 and 2012, NOx was measured using a custom built NO 

chemiluminescence analyzer, constructed as described by Ridley and Grahek (1990).  For 

that instrument, chemiluminescence photons were detected using a Burle Industries 8852 

photomultiplier tube.  The instrument incorporates a blue light LED NO2 photolytic 

converter. Artifact tests were conducted to assess the background from 

chemiluminescence generated by ozone reaction with other atmospheric compounds 

other than NO.  In 2008, artifact test were done before each ambient air sample 

measurement. In 2012, artifact tests were performed every 30 minutes. The NO2 
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converter, which has two blue light photodiodes on either end of the converter, 

photolyzes NO2 to NO.  The 395 nm wavelength output of the photodiodes makes the 

converter very selective for NO2 because interferences (HONO and NO3) poorly absorb 

energy in the photodiode output wavelength range.  The average NO2 conversion 

efficiency for a flow rate of 1.2 slpm was determined to be 28.6±0.9% in 2008. In 2012, a 

new photolytic converter from Air Quality Designs (Wheat Ridge, CO) was used with a 

converter efficiency of 56±6%.   The instrument was calibrated daily by dilution of 5.0 

ppm NO in nitrogen standard (Praxair) with ultra-zero air.  An independent calibration 

using a separate NO standard (5 ppm; Praxair) was used to evaluate the accuracy of the 

standards.  These two standards differed by 2%.  The 3σ, 1 minute average detection limit 

for the 2008 study for NO and NO2 was 7 ppt. In 2012, two equal length 100 ft Teflon 

sampling lines were connected to a Hamilton 4 port valve to allow for the measurement 

of NOx at two different heights. In 2001, NOx and NOy were measured via a similar 

instrument, as described by Thornberry et al. (2001).   

In 2009 NO and NO2 were measured simultaneously by a 2-channel 

chemiluminescence instrument (Air Quality Design) with a blue light LED converter for 

NO2. Sensitivity calibrations were performed daily using standard addition of 10 sccm 

NO calibration gas 101.4 ppmv±1 % NIST traceable from Scott-Marrin, Inc. The blue 

light NO2 converter was calibrated by gas phase titration of the NO calibration gas to 

NO2 using ozone, and the average conversion efficiency was ~60%. The average 

sensitivity was ~4 counts per pptv and 5 counts per pptv on the NO and NO2 channels, 

respectively. The background counts were 1300 for the NO channel and 1500 for the 

NO2 channel. The minimum detection limits defined as 3 time the standard deviation of a 



227 
 

50 second zero air measuremtn were 25 pptv for NO and 33 pptv for NO2. Sampling was 

done from 3 separate PFA Teflon inlets to measure the vertical gradients through the 

canopy. The sampling heights were 6m, 20m, and 34 m. The diameters of the PFA tubes 

were ½” for the 6-m and 20-m tubes and 5/8” for the 34 m tube. The flow rates were 

approximately 80 slpm for the ½” tubes and 130 slpm for the 5/8” tube. An automated 

valve system cycled a 10 min sampling duration sequentially from each inlet for 

approximately 3 weeks.  

In 2012, a two-channel chemiluminescence flux instrument (Air Quality Design, 

Inc.) was used to measure the flux of NO, NO2, and NOy at 34 m. Details of this 

instrument and measurements can be found in Geddes and Murphy (2014). A single 50 m 

line was connected to an inlet containing a molybdenum and flux rate photolytic 

converter (Air Quality Design, Inc.).   NO was measured with one channel while the 

other inlet was switched between the Mo and photolytic converter. Flux measurements 

and calculations are described in detail in Geddes and Murphy (2014). 

Benzene and toluene were measured by GC/MS, as described by Apel et al. 

(2002).  Aerosol size distributions were measured using a Scanning Mobility Particle 

Sizer (SMPS), deployed on the tower at a height of 26 m., 4 m above the average canopy 

height.  The sampling inlet consisting of 7 m of ¼″ outer diameter (0.028” wall) Tygon 

tubing.  A GAST pump was used to create a fast flow rate, while the SMPS sampled from 

a tee connected to the tubing that led to the pump.  The flow rate of the pump was set to 

1.5 L/min using a needle valve.  Size distribution data were collected every 5 minutes, 

continuously, except during periods of vertical profiling within the forest canopy. 
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 A TECO 49C Ozone monitor was employed to determine ozone, with a precision 

of ~1 ppb.  CO concentrations in 2001 were determined using a TECO 48C.  PAN was 

determined using a GC-ECD instrument, as described in (Pippin et al. 2001).  

 

Results and discussion 

Figure 1 presents the diurnal average (hourly) NOx and radiation observed at the 

PROPHET site during summer 2008.  Figure 1S (see supplementary information) shows 

some example observations at PROPHET 2008.  As shown in Figure 1 there is, on 

average, an increase of ~1 ppb of NOx at the tower sampling inlet (i.e. 34m, ~12m above 

canopy height) with a maximum around 7 am local time.  Significantly, we observe the 

average NOx, and as shown in individual cases below, to begin to increase before sunrise 

(as NO2).   A plot of the frequency of the time of day for the maximum in NOx is shown 

in Figure 2.  While the peak in Figure 2 occurs at 0730 (EST), there are significant 

numbers of events that occur with earlier maxima, when the atmosphere is still quite 

stable. The timing of the peak in NOx is at or near the end of the time of day prior to 

breakup of the NBL due to solar heating.  For the time period 0400-0800, the distribution 

of NOx observations is very broad, with a peak at 600-800 ppt, but extending out to 

~3000 ppt; in contrast, the midday distribution  is rather sharp, with a peak in the 500-900 

ppt range, with essentially no observations for [NOx]>2000 ppt (data not shown). 

The increase in NO in the morning can be readily explained by photolysis of NO2, 

and the photostationary state relationship (reactions 1-3) and Equation I.   
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 NO2    +   hν  NO  +  O(3P)   (1) 

 O(3P)  +  O2  O3     (2) 

 O3 +  NO   NO2 +  O2   (3) 

 [NO]pss  =  JNO2[NO2]/k3[O3]                       I 

As an example, in Figure 3a we show the observed [NO], along with the calculated 

[NO]pss from Equation I, for July 1st, 2008.  Figure 3b shows the calculated JNO2, and 

observed O3 mole fraction for that day.  As shown in Figure 3a, [NO]pss has the same 

shape and comparable magnitude as the observed [NO] in the morning, and thus 

photolysis of NO2 can explain the morning NO peak.  While NO2 photolysis can explain 

the NO peak, it does not explain the morning NOx peak. The NOx peak often begins 

before sunrise.  Below we discuss each of the potential mechanisms that could explain a 

morning NOx peak. 

HONO production and photolysis 

As discussed by many in the past, HONO is produced on a variety of surfaces 

(Sakamaki, Hatakeyama, and Akimoto 1983, Finlayson-Pitts et al. 2003, Zhou et al. 

2002, Zhou et al. 2011), e.g. as shown in reaction 4.  If sufficient HONO were produced 

on forest canopy surfaces and released to the stable boundary layer, photolysis upon 

sunrise (reaction 5) could account for some of the NOx.   

 2NO2 +   H2O  HNO3  +  HONO    (4) 

 HONO +  hν  NO  +  OH     (5) 
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To test this, we calculated the total possible production of NOx from HONO photolysis 

for the average data, using the HONO observations for July 23, 2008; JHONO[HONO] was 

integrated over the period 3:35 am to 7:10 am, during which [HONO] was 20-25 ppt, and 

during which NOx increased by 611 ppt, from about 1100 ppt.  Integrated HONO 

photolysis over this period yielded a total NOx production of ~84 ppt, only 14% of the 

observed 611 pptv increase in NOx., We note that we used clear sky JHONO values for this 

calculation, so our NOx production from HONOphotoxidation is a maximum.  

Interestingly, [HONO] increases through the morning with radiation at this site, and thus 

photo-induced HONO production is much more important than the dark production.  

Thus while HONO production and photolysis is significant, (especially as an OH source) 

it appears to represent only a minor source of NOx production at the surface at this site. 

It should be noted that it has been shown that HONO can react with oxygen 

radicals, hydrogen radicals (Tsang and Herron 1991, Hsu, Lin, and Mebel 1997), 

NO3(Wallington and Japar 1989), and OH radical (Atkinson et al. 2004) to form NO2. 

These reactions could lead to the possible release of NOx from HONO stored on leaf 

surfaces. However, many of these compounds are found in small abundance at the site, 

and the rate constants of these reactions are relatively small and where not looked at in 

further detail. 

Anthropogenic sources 

A possible source of the early morning NOxis long range transport of aged 

polluted air from anthropogenic sources, e.g., for UMBS, from Detroit or Chicago.  A 

good marker for anthropogenic pollution is toluene, a significant mobile source pollutant.  
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In Figure 4 we show an example case for Aug. 8, 1998.  As shown in the figure, there is 

an increase in NOx during the time that O3 is decreasing in the NBL due to dry 

deposition.  As shown, toluene increases with NOx, in support of this hypothesis.  In 

Figure 5a, we show the 24hr. isentropic back trajectory (HYSPLIT) showing that the air 

sampled likely transported at or very near the surface through the night, with an origin in 

the Detroit metropolitan area.  This 24 hour back trajectory is highly conservative, as the 

lifetime of the conversion of NOx to organic nitrates or HNO3 is on the range of 3-10 

hours (Min et al. 2014). This hypothesis is only supported if all early morning NOx 

plumes have back trajectories that pass through polluted urban regions. We find this not 

to be the case. Figure 5b shows the 12 hour back trajectory for the morning of August 

13th, 2012, and shows the air mass that was sampled passed over Lake Michigan. Back 

trajectories for other mornings show air masses that traversed over Lake Superior, rural 

Canada, and rural parts of Wisconsin (data not shown). None of those locations are a 

known significant source of anthropogenic NOx, and mean the likely source of the early 

morning NOx is not from long range transport. 

Upward mixing from surface sources 

 Apossible source of the early morning NOx plume is ground or canopy based 

sources of NO that slowly diffuse upward past the inlet, in the relatively stable night air, 

and passes the inlet at semi-random times, but are enhanced by sunrise-mediated 

turbulence.  NO flux data obtained by Carleton and Carroll [unpublished data, 2003] 

indicates a soil flux in this forest of, on average, ~180 nmoles/m2-hr.  If that NOx mixes 

into a 40m layer (i.e. up to roughly the tower inlet height) over a 6 hour period (i.e. from 
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sunset to the typical time of observation of the NOx increase), this is the equivalent of 

~0.7 ppb, within the range of observations.  Of course it is more likely that the NOx 

emitted would be more stratified and thus the peak concentrations observed as the NOx-

enriched air moves upward past the tower inlet could be greater than this.  This then 

implies that soil emissions followed by upward mixing is one significant possibility.  

However, recent measurements by Min et al. (2014) show significant in-canopy NOx 

chemistry that reduces the amount of NOx soil emissions that reach sampling inlets 

located above the canopy. 

 In the summer of 2009, we conducted vertical profile measurements of NOx in the 

below-canopy environment.  In Figure 6 we show average of NOx data at the surface (6-

m), at mid-canopy level (20-m), and above the canopy (at 34-m).  This plot shows that on 

average, there is more NOx at the 34-m height than below.  Such an average plot can, 

however, be impacted by transport events carrying large concentrations just above the 

canopy, as discussed below.  In Figure 7 we show a histogram of the gradients in NOx for 

2009 observations, defined here as [NOx]20m - [NOx]6m.  As shown in Figure 5, while the 

mode of the distribution represents the no-gradient case, ~41% of the time there is a 

gradient that would lead to an upward flux of NOx from the surface.  

This trend was not seen in the summer of 2012. Vertical profiles of NOx measured 

during the summer of 2009 and as described in Seok et al. (2013) both lacked the time 

resolution to accurately identify NOx sources. Typical in-canopy mixing times are ~100 

s(Kim et al. 2013, Min et al. 2014) well below the sampling time of the 2009 vertical 

profile measurements and measurements described in Seok et al. (2013) (10 min 
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sampling period and 5 min sampling period, respectively).  In the summer of 2012, NOx 

measurements were made at a height of 31.5 m constantly while another 

chemiluminescent NOx instrument switched measurements between 1.5 m and 18 m. In 

this method, the NOx gradient profile could be observed on a smaller timescale, with 

observations within a minute of each other. NOx mole ratios from August 8th, 2012, 

August 13th, 2012, and August 14th, 2012are shown in Figure 8a, 8b, and 8c. This day 

shows a clear increase in the concentration of NOx above the canopy (31.5 m) before any 

increase can be seen within the canopy (18 m) or near the forest floor (1.5 m).This 

suggests that the increase in the concentration of early morning NOx is due from a source 

above the canopy, and not from soil emissions. During the mornings observed in the 

summer of 2012, the concentration of NOx at 1.5 m wasconsistently lower than the 

concentration of NOx measured at 34 m during a morning. Figure 9 shows the ratio of 

NOx measured at 31.5 m over 18 m and 1.5 m as a function of time. It can clearly be seen 

that there is a clear increase in the concentration of NOx above the forest canopy that 

cannot be seen below the forest canopy.  This leads to the belief that the source of the 

early morning NOx is downward mixing of polluted air from the residual layer during the 

breakup of the NBL. 

 

Downward mixing of polluted air 

As discussed by Hastie et al. (1993) and others, the NBL is statically stable, with 

a positive lapse rate that can be as much as 0.04K/m (see Figure 10, for July 23/24, 2008; 

this was a typical clear sky night, with a large NOx peak before sunrise, see Fig. 11).  
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This isolates the air near the surface from that aloft, resulting in exponential decay in 

concentrations of various pollutants at the surface, due to dry depositional loss.  

Downward mixing of polluted (i.e. high NOx) air from aloft, e.g. from within the residual 

layer, or from nocturnal jets (Singh, McNider, and Lin 1993), may result in an increase in 

[NOx] (or other species that are relatively surface-depleted) at the surface.  If this were 

the case, we can lay out the following scenario: within the polluted layer aloft would be 

excess CO (if the source is combustion) as well as excess PAN and O3, relative to the 

surface layer (i.e. tower height) concentrations, due to dry depositional loss of PAN and 

O3 from the surface layer during the time prior to the occurrence of the peak (Hastie et al. 

1993).  A viable hypothesis is that downward mixing of air not subject to dry depositional 

losses, or of transported more polluted air, would cause an increase of these species 

observed at the surface.  In Figure 12 we present the diurnal average of CO, NOx and 

radiation observed for the summer of 2001.  As shown in the figure at the time of the 

NOx maximum, CO is flat, and typically less variable than during daytime, inconsistent 

with downward mixing of polluted air.  It is noteworthy that beginning at ~8:00 am, i.e. a 

time typically associated with the start of the NBL breakup, NOx actually decreases, 

likely from dilution with cleaner air from aloft (see also Fig. 1).  Figures 11 and 13 

present radiation, [NO], [NOx], and [CO] obtained on July 24thand 20th, 2001, 

respectively, each of which shows the NOx peak beginning in the 4-5 am time frame.  If 

combustion were the source of the NOx in these cases, there would have been a 

simultaneous increase in CO of ~30-90 ppb, given the typical value for the CO emission 

factor of ΔCO/ΔNOx ~8 from mobile sources (McGaughey et al. 2004), and ~25 in 

stationary source combustion plumes (Neuman et al. 2009, Nicks Jr et al. 2003), and the 
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relatively longer lifetime for CO.  However, if the source of the NOx were mobile 

sources, the variability in the CO data is such that we cannot rule that out, on the basis of 

the CO data.  

Along with CO, a number of "markers" of combustion exist that are useful; 

among them is aerosol.  In the summer of 2008, we conducted aerosol measurements 

using an SMPS, mounted ~10 m above the canopy on the PROPHET tower.  In Figure 14 

we present radiation, fine particle number density (15-40nm diameter range), [NOx], and 

ozone observed on July 1, 2008.  As shown in this figure, NOx begins increasing at ~4:00 

am, while O3 is decreasing, presumably a result of dry deposition within the stable 

boundary layer.  At the time of the NOx peak at ~7am, there is no significant change in 

small particle number density, i.e. no sign of an impact of downward mixing of polluted 

air mass or of local combustion related NOx.   

In Figure 15 we present observations of radiation, calculated friction velocity (a 

measure of turbulent mixing), NOx, PAN and ozone concentration data for July 20, 

2001and August 13th, 2012.  As shown in this figure, while there is a ~3 ppb increase in 

NOx starting in the 4-5am time frame, neither PAN nor O3 increase, as would be expected 

if the source were downward mixing (Hastie et al. 1993).  As shown in Figure 15 and as 

discussed by Hastie et al.(1993), PAN and O3 do increase later in the morning as the 

mixed layer rises, and PAN and O3 mix downward.  The friction velocity is flat through 

the morning NOx peak.  Thus, there is evidence in this case against turbulent mixing 

playing a role.  Indeed, clearly the morning NOx peak can often occur in very stable 

conditions. 



236 
 

An insight into the source of the early morning NOx peak can be found not during 

sunrise, but in the early morning hours before sunrise. As shown in Figures 8b and 8c, 

there is a dramatic increase in the concentration of NOx around 3:00 am that is measured 

above the canopy that cannot be seen below the canopy. A possible source of this peak 

may be from atmospheric stratification of the NBL, also called fanning (Gossard et al. 

1985). If a stratified parcel of air had a larger concentration of NOx, sporadic turbulent 

events or low-level nocturnal jets that form in the early morning could mix NOx down 

towards the forest floor and cause the rise in NOx in the early morning. As shown in 

Figure 16, on August 9th there is a clear increase in the friction velocity observed at the 

Ameriflux tower around 3:00 am, however, no increase of NOx can be seen above the 

canopy. Instead it is one of the only times that NOx mixing ratios below the canopy are 

higher than above the canopy. The opposite of this is seen in Figure 15b. During the early 

morning of August 13th, 2012, a large spike in [NOx] is seen above the canopy and due to 

a small friction velocity, the increase in concentration is not seen within or below the 

canopy. When friction velocity is less than 0.35, there is not enough turbulence to mix in-

canopy and above canopy air masses (Barr et al. 2013). This provides more evidence that 

the mixing between in-canopy air masses and the boundary layer above the canopy is not 

well understood, and may indicate that turbulent motion during the night may induce 

downward mixing of polluted air from the residual layer or a stratified parcel into the 

canopy 

In the summer of 2012, NOx flux measurements were made as described in further 

detail by Geddes and Murphy (2014).  Due to the limited precision of the instrument, 

most flux measurements made during the field campaign had uncertainties between 50% 
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to >100% and therefore the flux measurements of NOx should not be used to make a 

conclusive statement. Geddes and Murphy (2014) found no observable mornings in 

which the NOx flux was large enough to make a conclusive determination on the 

direction and magnitude of the flux. 

 

Conclusions 

 While the NO morning peak is clearly explained by photolysis of NO2, 

photochemistry cannot explain the morning peak in NOx.  We showed that this peak is 

inconsistent with downward mixing from the residual layer when assuming the residual 

layer is highly polluted, nor can it be caused by photolysis of nitrogen species on the 

canopy surface, as it often occurs before sunrise.  From this work, a picture emerges of a 

regional surface-bound air mass that "wallows" in the direction of the mean surface wind, 

while accumulating NOx from the variety of surface sources, both anthropogenic (point 

and distributed) and natural (likely widely distributed soil and canopy emissions), 

culminating in a peak in [NOx] just before the NBL breakup with associated downward 

mixing from the residual layer.  Such processes can have a large impact on the 

composition of the atmosphere prior to and at the time of sunrise, leading to relatively 

NOx-rich conditions at an otherwise relatively clean-air site.  That can have impacts on 

the early morning nighttime chemistry involving the NO3 radical (reactions 6-9 below), 

conversion of  
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NO2 +  O3  NO3 + O2    6 

 NO3 + NO2  N2O5      7 

 N2O5 + aerosols  aerosol nitrate    8 

 NO3 + BVOCs  RONO2    9 

NOx to HNO3 and organic nitrates (Perring et al. 2009).  There can also be significant 

impacts on the morning photochemistry, since the enhanced [NO2] and relatively large 

relative humidities present at that time can promote HONO production, and thus larger 

OH production rates at sunrise.  As chemical transport at night has been little studied, 

such processes should be investigated further, as part of organized field campaigns.  

Much light could be shed on this through vertical profile NOx measurements at night 

across a sufficient scale (e.g. the Michigan lower peninsula), and through the full 

boundary layer, which could be pursued via a series of aircraft low-approach profiles 

above small airports that have little if any night time activity. There is also a greater need 

for high precision instrumentation to accurately measure the flux of NOx from soil and 

forest canopies.  
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Figures 

 

Figure 1: Diurnal variation of NOx from June 24ththrough July 26th, 2008 at the 
PROPHET site and the morning NOx peak observation. 
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Figure 2: Histogram of the frequency of time of day for maximum NOx. 
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Figure 3. Observed NO, NO2, O3, and calculated steady-state NO, for July 2nd, 2008. 

 

a) 

b) 
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Figure 4: Toluene, NOx, and O3 observed on August 8th, 1998. 
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Figure 5: 24 hour back trajectory for the early morning of August 8th, 1998 and 12 hour 
back trajectory for August 13th, 2012. 

 

 

 

Figure 6: Diurnal variation of NOx concentration at three levels (above and below the 
canopy) observed in summer 2009 at the PROPHET site. 
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Figure 7: Histogram for the frequency of the magnitude of the NOx concentration 
gradient between 34 m and 6 m above ground level, during early morning hours, summer 
2009. 
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Figure 8: NOx measurements at 1.5, 18, and 31.5 m during the morning of August 8th, 
2012 (a),August 13th, 2012 (b), and August 14th, 2012 (c). 
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Figure 9: Ratio of [NOx]31.5 over [NOx]1.5and [NO]18 for the mornings of  August 8th, 9th, 
12th, 13th, 14thin the summer of 2012.  
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Figure 10: Temperature vertical profiles above the canopy for July 24th, 2008. 
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Figure 11: Time series of radiation, NO, NOx, and CO for July 24th, 2001. 
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Figure 12: Diurnal variation of CO, NOx, and radiation observed in the summer of 2001 
at the PROPHET site. 
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Figure 13: Time series of radiation, NO, NOx, and CO for July 20th, 2001. 
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Figure 14: Radiation, particle number density, NOx, and O3 observed on July 1st, 2008. 
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Figure 15: Observed radiation, friction velocity, NOx, PAN, and O3 for July 20th, 2001 (a) 
and friction velocity, NOx, O3, and radiation for August 13th, 2012 (b). 
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Figure 16: Observed [NOx] measured at 1.5, 18, and 31.5 m and friction velocity (u*) 
during the morning of August 9th, 2012. 
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