34 research outputs found

    Public healthcare financing and provision in Hong Kong : a public-private partnership approach

    Get PDF
    published_or_final_versionPolitics and Public AdministrationMasterMaster of Public Administratio

    Thermal comfort and energy performance of public rental housing under typical and near-extreme weather conditions in Hong Kong

    Get PDF
    © 2017 Elsevier B.V. Building performance evaluation is crucial for sustainable urban developments. In high-density cities, occupants suffer from poor living conditions due to building overheating, especially during increasingly frequent near-extreme summer conditions caused by climate change. To represent this situation, the summer reference year weather data was employed for building simulations using DesignBuilder. This study aims to evaluate the thermal comfort and energy consumption of four typical public rental housing (PRH) building types in Hong Kong. For free-running flats, results show generally higher air temperatures in the oldest PRH type (Slab) with a compact linear building form and the most sensitive response to outdoor temperature changes for another older PRH type (Trident) with a Y-shaped design, possibly owing to its high wall conductivity. Occupants in all building types experience a ???10% increase in the proportion of discomfort hours when compared to results for typical summer conditions, but overheating is the most severe in Slab type PRH. Following an initial assessment of the cooling energy usage, a simple sensitivity test was conducted to explore the potential energy savings by various passive design strategies, including shading and reducing the exposed cooled space. A cross-shaped building form also appears to be more energy efficient. These findings, complemented by further parametric analyses, may prove useful when designing buildings for climate change

    A comparative study on the indoor thermal comfort and energy consumption of typical public rental housing types under near-extreme summer conditions in Hong Kong

    Get PDF
    © 2017 The Authors. Published by Elsevier Ltd. Residents of the dense urban environment in Hong Kong suffer from poor living conditions due to building overheating, especially during near-extreme summer conditions. In this study, the thermal comfort and energy performance of typical public rental housing (PRH) building types were simulated using DesignBuilder. Results show that the oldest Slab type PRH, which has a compact building form, has the highest indoor air temperature, yet the lowest cooling energy demand. On the other hand, the Trident type PRH, with the largest external wall U-value, performs the worst overall and is the most responsive to outdoor temperature changes

    Developing Street-Level PM<sub>2.5</sub> and PM<sub>10</sub> Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors

    Get PDF
    Monitoring street-level particulates is essential to air quality management but challenging in high-density Hong Kong due to limitations in local monitoring network and the complexities of street environment. By employing vehicle-based mobile measurements, land use regression (LUR) models were developed to estimate the spatial variation of PM<sub>2.5</sub> and PM<sub>10</sub> in the downtown area of Hong Kong. Sampling runs were conducted along routes measuring a total of 30 km during a selected measurement period of total 14 days. In total, 321 independent variables were examined to develop LUR models by using stepwise regression with PM<sub>2.5</sub> and PM<sub>10</sub> as dependent variables. Approximately, 10% increases in the model adjusted <i>R</i><sup>2</sup> were achieved by integrating urban/building morphology as independent variables into the LUR models. Resultant LUR models show that the most decisive factors on street-level air quality in Hong Kong are frontal area index, an urban/building morphological parameter, and road network line density and traffic volume, two parameters of road traffic. The adjusted <i>R</i><sup>2</sup> of the final LUR models of PM<sub>2.5</sub> and PM<sub>10</sub> are 0.633 and 0.707, respectively. These results indicate that urban morphology is more decisive to the street-level air quality in high-density cities than other cities. Air pollution hotspots were also identified based on the LUR mapping
    corecore