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Highlights:  

x SRY weather data is used to represent a near-extreme summer in building simulation  

x Building performance of typical public rental housing types in Hong Kong is assessed  

x Occupants in all building types experience a substantial duration of overheating  

x Cooling energy can be saved by better passive building designs  

x Findings suggest how buildings in high-density cities may cope with climate change  
 

Abstract 

Building performance evaluation is crucial for sustainable urban developments. In high-density cities, occupants suffer 

from poor living conditions due to building overheating, especially during increasingly frequent near-extreme summer 

conditions caused by climate change. To represent this situation, the summer reference year weather data was 

employed for building simulations using DesignBuilder. This study aims to evaluate the thermal comfort and energy 

consumption of four typical public rental housing (PRH) building types in Hong Kong. For free-running flats, results 

show generally higher air temperatures in the oldest PRH type (Slab) with a compact linear building form and the 

most sensitive response to outdoor temperature changes for another older PRH type (Trident) with a Y-shaped design, 

possibly owing to its high wall conductivity. Occupants in all building types experience a ~10% increase in the 

proportion of discomfort hours when compared to results for typical summer conditions, but overheating is the most 

severe in Slab type PRH. Following an initial assessment of the cooling energy usage, a simple sensitivity test was 



conducted to explore the potential energy savings by various passive design strategies, including shading and reducing 

the exposed cooled space. A cross-shaped building form also appears to be more energy efficient. These findings, 

complemented by further parametric analyses, may prove useful when designing buildings for climate change. 
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1. Introduction 

Buildings account for around 40% of the global energy consumption, of which three quarters arise from the 

residential sector [1]. With growing concerns regarding environmental and health problems caused by the urban built 

environment, the evaluation of building performance, reflected by aspects like thermal comfort and energy use, 

becomes crucial for the sustainable development of cities. A common evaluation approach is to make use of 

commercially available simulation tools such as EnergyPlus [2]. These tools require an input of representative hourly 

weather data. The typical meteorological year (TMY) weather file [3] has been previously used for building energy 

and daylight studies in Hong Kong [4-6]. However, the TMY may be inadequate to assess the thermal performance 

of buildings under intensifying ‘onerous warm weather conditions’ [7], which is particularly important as evident from 

the excess deaths of elderly at home during the France 2003 heat wave due to poor urban and building designs [8, 9]. 

Therefore, to better represent such near-extreme summer conditions in building simulations, the concept of Summer 

Reference Year (SRY) was introduced [10]. A set of SRY weather data has also been recently derived for Hong Kong 

[11].  

Hong Kong has a subtropical climate and is unique for its high-density high-rise urban form. In summer, 

overheating is common in buildings due to high air temperature, intense solar radiation, high relative humidity, and 

poor ventilation. This leads to thermal discomfort, a greater energy demand for mechanical cooling [12, 13], as well 

as a higher heat-related mortality rate [14]. The issue of overheating is critical in residential buildings, especially for 

comfort in bedrooms, as people have less tolerance towards high temperatures during sleep time [15]. Public rental 

housing (PRH) accommodates almost half of the total population in Hong Kong [16], of which most are elderly, 

physically disabled or financially less capable, making them even more vulnerable to extreme hot weather. To 

ameliorate the indoor thermal discomfort, air conditioners are extensively used to cool flats, contributing to the largest 

proportion of electricity consumption in the residential sector [17]; this, however, incurs high costs and may not be 

affordable for all. Hence, it is equally, if not more, important to evaluate the thermal comfort of buildings under free-

running conditions, especially during hot and humid summers.  

In face of climate change, extreme weather events, such as heat waves, are expected to become more frequent 

[18]. The effects are further exacerbated in dense built environments as a result of intensified urban heat island (UHI) 

events [19]. Consequently, occupants may turn up their air-conditioners to cool the indoor environments, which 

generates more exhaust heat onto the streets and raises the outdoor temperatures, leading to a vicious cycle. To enhance 

the livability in high-density urban environments and create the capacity for sustainable development, the Hong Kong 



Government has set out a strategic plan to embrace future socio-economic and environmental challenges [20]. As one 

of the targets for a greener city, a 40% reduction in energy use is aimed to be achieved by 2025 [21]. With buildings 

accounting for 90% of the current electricity consumption in Hong Kong, it is inevitably necessary to have a significant 

energy cut in buildings. This should not be achieved by compromising the indoor thermal comfort of living 

environments, but instead, by improving building performances through better building designs. 

In view of the current situation in Hong Kong as outlined above, this study aims to: 

1. Assess and compare the indoor thermal comfort of four typical PRH building types in Hong Kong under free-

running conditions during near-extreme summers; 

2. Evaluate the climate resilience of the building types by making use of two weather datasets, namely TMY 

and SRY; 

3. Estimate the cooling energy consumption, by air-conditioners, of the building types under near-extreme 

summer conditions; and 

4. Explore the energy saving potentials by conducting a simple sensitivity test on passive building designs.  

 

2. Methodology 

2.1 Building types 

The four PRH building types studied are namely Slab, Trident, Harmony and Concord (Figure 1). They 

possess distinctive building forms, different number of flats, various flat sizes, and represent different generations of 

PRH designs from the 1970s through to the 2000s (Table 1) [22], with Slab type PRH being the oldest, and Harmony 

and Concord types more prevalent amongst newer PRH estates. They are chosen to represent the typical forms of 

residential buildings because they are found in around 70% of all PRH estates located across Hong Kong [22]. Their 

floor layouts were drawn according to the Wo Che Estate, Cheung On Estate, Sheung Tak Estate and Yat Tung (I) 

Estate in Hong Kong respectively (Figure 1). 

 

2.2 Building model and simulation settings 

Building simulations were set up with the DesignBuilder v5 software, in which building performance data 

were generated using the state-of-the-art dynamic EnergyPlus v8.5 simulation engine. EnergyPlus is the official 

building simulation program used by the United States Department of Energy and has been extensively tested and 

validated by field measurements and empirical methods [23-25]. It is able to produce detailed and accurate results for 

building energy assessments [2, 26] and analyses of indoor natural ventilation [24, 27]. Moreover, the BESTest 

(Building Energy Simulation TEST) procedure, developed by the International Energy Agency to diagnose the 

capabilities of building energy simulation programs, has been used to verify the robustness of the DesignBuilder 

software [28, 29]. 

In DesignBuilder, models are composed of multi-zoned building blocks and component blocks. To speed up 

thermal calculations in large models, “adiabatic component blocks” are generally used for setting adjacent flats where 

internal thermal analyses are not required, whereas “standard component blocks” are used for shadings and reflection 

blocks. Generic models of the PRH flats were first constructed in block level and then further partitioned into zones 



with different activities allocated accordingly (Figure 2). Full-size windows without fitted air-conditioners or exhaust 

fans were assumed to have a height of 1.8m and were carefully placed based on the floor layout plans. Standard 

component blocks were added on top of windows where the flat above extrudes to provide shading (Figure 2a). To 

reduce the computational cost required, only flats of the middle floor for each building type were simulated to represent 

an average scenario [30, 31]; the common areas and the rest of the building were represented by a single adiabatic 

component block. 

 

 

In order to achieve a more accurate and realistic simulation, building physical parameters, such as floor 

heights and cooled areas, of the modelled flats were set differently for each building type according to the reference 

PRH estates. Construction materials were also chosen after reviewing the literature [30, 32-34]. Details of the building 

model properties are presented in Table 2. Although occupants in different PRH estates may vary in household sizes 

and demographic backgrounds, a uniform occupant density of 0.083 people/m2, calculated from an average living 

space per person of 12m2 [16], was adopted for all four building types for a fairer comparison of the building design 

itself. Another parameter which plays a role in controlling the indoor thermal conditions and energy consumption is 

the occupancy schedule. It was set, also uniformly across the four building types, according to the survey findings of  

 

Chen and Lee [35], in which a slight difference in occupancy levels in the day during weekdays and weekends has 

been observed. Simulations were run using two different heating, ventilation and air conditioning (HVAC) settings 

separately: 24-7 calculated natural ventilation and scheduled air-conditioning (cooling only). For free-running flats, 

no mechanical ventilation was applied and windows were assumed to remain 30% open regardless of the outdoor 

weather conditions. For air-conditioned flats, cooling was applied to bedrooms and living rooms only. The cooling 

setpoint temperature was set to 25°C, as advised by the Hong Kong Government [36], for an overnight cooling period 

from 2pm to 8am [30] throughout the summer. A coefficient of power (COP) of 2.5 was adopted for the air 

conditioning system [37]. 

 

2.3 Weather data 

Two hourly weather datasets were used in this study. They provide inputs of dry bulb air temperature, relative 

humidity, solar radiation, wind speed and direction etc. for realistic building simulations. The TMY represents typical 

year conditions based on a 25-year measured data record between 1979 and 2003, while the SRY, derived by 

regression analyses and applying adjustments to the Test Reference Year (TRY), represents near-extreme conditions 

during the extended summer months from April to September [11]. The fundamental concept of deriving the SRY is 

to apply regression equations and a ranking methodology to define the adjustment factors for each of the variables in 

the TRY dataset. The following equation shows the conceptual model for the adjustment of individual meteorological 

variables: 

Tdry(SRY) = Tdry(TRY) + ΔTdry     (1) 

, where Tdry(SRY) and Tdry(TRY) refer to the dry bulb temperatures in the SRY and TRY series and ΔTdry is Tdry shift.  



As the SRY dataset of Hong Kong has not yet been employed in building simulations, this study would serve 

to demonstrate how it can be used in practical applications. The responses of buildings during severely hot summers 

are particularly important as global climate change intensifies the effects of UHI and increases the duration and 

frequency of heat waves. Making use of both datasets, the indoor thermal comfort under typical and near-extreme 

summer conditions were compared to investigate the climate resilience of the four buildings types. For the purpose of 

this paper, summer is defined to be the five hottest months in a year, i.e. May to September, based on the normal 

meteorological conditions recorded by the Hong Kong Observatory (HKO) between 1981 and 2010 (Figure 3) [38]. 

Since the input data of both the TMY and SRY weather files are presented at hourly intervals, hourly data outputs for 

these summer months were extracted from the annual building energy simulations run in DesignBuilder for subsequent 

analyses of this study. 

 

2.4 Thermal comfort analysis 

The indoor thermal comfort of simulated flats were described by both air temperature and the Predicted Mean 

Vote (PMV) index [39]. A maximum indoor air temperature with 80% acceptability has been previously defined to 

be 29.5˚C for naturally ventilated buildings during hot summers in Hong Kong (Figure 4) [40]. Hours exceeding this 

threshold would therefore be considered overheated. Besides air temperature, factors affecting a person’s thermal 

comfort also include mean radiant temperature, wind speed, relative humidity, as well as two personal variables of 

metabolic rate and clothing insulation. The PMV model uses a seven-point scale from -3 to +3 to represent human 

thermal sensations from too cold to too hot. In accordance with the ISO standard 7730 [41], the PMV was calculated 

for the simulated flats within DesignBuilder, assuming a metabolic rate of 0.9 met and a summer clothing index of 

0.3 clo. The PMV generated by EnergyPlus may exceed the limits of the seven-point scale and numbers greater than 

3 simply reflect extremely hot predicted sensations. The ASHRAE Standard 55-1992 [42] defines a satisfactory 

thermal environment as one where 90% of the occupants are thermally comfortable; this corresponds to a 

recommended PMV between -0.5 and +0.5 [43, 44]. Therefore, a second threshold of PMV +0.5 was adopted in this 

study to evaluate the number of discomfort hours in the four building types. Nevertheless, it should be noted that the 

PMV index has been criticised for overestimating the thermal sensation of building occupants in warm climates [45, 

46], possibly due to acclimatisation of the occupants, and may limit the accuracy of the corresponding analyses. 

 

Studies have shown that the neutral thermal sensation for people living in hot and humid climates, such as in 

Singapore, Bangkok, and Malaysia, often corresponds to a temperature higher than the one predicted by a traditional 

PMV model [47, 48]. To account for such differences, various adaptive models for thermal comfort have been 

proposed since the 1990s based on field and empirical studies for both free-running and air-conditioned indoor 

environments [49-51]. Fanger and Toftum [47] put forward an extended PMV model which introduces an expectancy 

factor ‘e’ to predict actual votes of occupants in free-running buildings in warm climates. With reference to the 

adjusted model, applying an expectancy factor of 0.7 yields an upper temperature limit of 29.4°C for a predicted 

percentage of dissatisfied (PPD) of 20 (corresponding to a PMV of around 0.85), which is highly comparable to the 

findings by Cheng and Ng [40] (Figure 4). With an added interest to test the suitability of the extended PMV model 



in Hong Kong, a third analysis of indoor thermal comfort incorporating an expectancy factor of 0.7 has been conducted 

to further evaluate the simulated PMVs of the four building types.  

 

2.5 Cooling energy consumption and sensitivity test of designated parameters 

To assess the energy performance of air-conditioned flats, the amount of electricity used for cooling 

normalised by the total volume (i.e. cooled area x height found in Table 2) of cooled space in flats, which excludes 

kitchens, bathrooms and balconies, was evaluated. A simple sensitivity analysis was then conducted for the building 

type (Trident) with the highest cooling energy consumption to explore the energy saving potentials by various passive 

design strategies, assuming that occupant behaviour, represented by the setpoint temperature and cooling schedule, 

remains the same. Design modifications include thickening the external wall to reduce the U-value, adding external 

overhang shading to windows, creating an indoor-outdoor space between the façade and the cooled living room, and 

combinations of the above. Furthermore, the building form was modified to resemble other PRH types that use less 

cooling energy to examine the effects due to building shapes (Figure 5). 

 

3. Results and discussion 

3.1 Indoor air temperatures under free-running conditions 

 The simulated indoor air temperatures of the four PRH types under free-running conditions from May to 

September of the SRY are presented in Table 3 and Figure 6. For most of the time, the highest and lowest temperatures 

are observed in Slab and Concord type PRH flats, respectively. However, the daily maximum temperature of Trident 

type PRH is often up to 0.5°C higher than that of Slab type PRH (Figure 6a). Trident type PRH also has the largest 

indoor air temperature range of 11.23°C, while Harmony type PRH has the smallest range during the whole summer 

period. Comparing the indoor and outdoor median air temperatures, the indoor environments are around 0.5-2°C hotter 

than the outdoor conditions for all four PRH types (Figure 6b); but the daily maximum indoor air temperatures 

generally remain below the maximum outdoor temperatures, except occasionally for Trident type PRH (Figure 6a). 

On the other hand, the daily minimum indoor air temperatures of all four PRH types are constantly higher than the 

minimum outdoor air temperatures, with a particularly large indoor-outdoor temperature difference of up to 4°C for 

Slab type PRH (Figure 6c). It is also worth noting that the indoor-outdoor temperature difference is often larger for 

relatively cooler days, e.g. during mid-June when a trough is observed in Figure 6. This may indicate that heat gain 

during hotter days are retained inside the buildings, hindering indoor air temperatures to fall in response to the changes 

in outdoor weather conditions. 

 

3.2 Response to outdoor temperatures 

 To examine how the building types respond to changes in outdoor conditions, the simulated indoor air 

temperatures are plotted against outdoor air temperatures in Figure 7. In light of the different patterns observed for the 

daily maximum and minimum air temperatures (Figure 6a and c), which could be interpreted as temperatures in the  

day and at night, the analyses are conducted separately for daytime and nighttime temperatures. Here, daytime is 

defined as when the solar altitude is positive. 



In agreement with the previous findings of Coley and Kershaw [52], the relationship between indoor and 

outdoor temperature changes is linear. The responses are generally more sensitive during nighttime, as represented by 

a steeper gradient, for all four PRH types. Slab type PRH is the least responsive to outdoor temperature changes. Heat 

trapped from solar radiation in the day may hinder the indoor air temperatures from lowering at night, causing the 

daily minimum temperatures of Slab type PRH to remain much higher than outdoor temperatures. Trident type PRH 

shows the most sensitive response during both daytime and nighttime, meaning that it follows the most closely to the 

changes in outdoor temperatures. This explains the large temperature range and high daily maximum temperature 

observed for Trident type PRH. A notable feature in the building design of Trident type PRH is its thin external wall, 

and thus high U-value of 3.33 Wm-2K-1 (Table 2). It is therefore reasonable to assume that more conductive walls 

cause a quicker heat gain from outdoors, and consequently warming up the indoor air to cause higher maximum 

temperatures. There have also been studies that suggest higher risks of overheating in British dwellings with poorer 

insulation and greater U-values during hot spells [53, 54]. However, by repeating the simulation for Trident type PRH 

with a reduced U-value, it is found that this is not the only factor causing the sensitive response of Trident type PRH 

(results not shown), and thus points to the need for a more detailed parametric analysis to examine other potential 

governing factors, such as the window-to-wall ratio and the thermal mass of walls. 

 

3.3 Thermal comfort under free-running conditions 

3.3.1 Indoor air temperature 

The thermal comfort in the four PRH types are first described by air temperature. The durations of discomfort 

felt by occupants during daytime and nighttime in the four building types are shown by the number of hours with 

indoor air temperatures above the 29.5°C threshold with 80% acceptability (Figures 8a and c), whereas the intensity 

of discomfort during such hours are shown by the corresponding temperature distributions (Figure 9). Looking first at 

the example period from late August to mid-September (Figure 6b), median indoor air temperatures often exceed the 

comfort threshold even when outdoor temperatures do not. Overheating is observed in all four PRH types, but with 

different durations and intensities. Occupants in Slab type PRH experience the most hours of discomfort during both 

daytime and nighttime. During near-extreme summer conditions, the median indoor air temperature of Slab type PRH 

is 29.71°C (Table 3), implying that the building is overheated for more than half of the time in summer. For Trident 

type PRH, occupants experience overheating during more than 50% of the time in the day and more than 40% of the 

time at night. Harmony and Concord types PRH show largely similar trends with around 40% and 30% of the summer 

days and nights above the air temperature threshold. Referring to Figure 9a, it is clear that occupants in Slab and 

Trident types PRH experience both longer durations and higher intensities of discomfort than those in Harmony and 

Concord types PRH in the day. The situation is similar at night (Figure 9b), but Slab type PRH stands out with a worse 

thermal comfort condition. 

 

  



 

3.3.2 Standard PMV model 

 The second measure of thermal comfort in the four PRH types makes use of the standard PMV index, which, 

besides air temperature, takes into account other parameters of thermal comfort, such as the radiant and convective 

heat transfers [39, 41, 55]. Since a PMV of +0.5 corresponds to a 90% acceptability of indoor thermal comfort (instead 

of 80%), results show significantly more hours of discomfort for the occupants in all four building types compared to 

the earlier analysis using the air temperature threshold (Figures 10a and c). Nevertheless, the comparison between 

building types is largely similar. Occupants in Slab type PRH flats experience the most hours of discomfort, followed 

by those living in Trident, and then Harmony and Concord types PRH flats. During nighttime, results show that 

Harmony type PRH has a higher number of discomfort hours than Concord type PRH. Referring to the distribution of 

PMV (Figure 11), the distribution patterns for Slab and Trident types PRH are clearly shifted towards the higher end 

of the PMV scale compared to that for Harmony and Concord types PRH, indicating that occupants experience more 

time with a warmer thermal sensation. Occupants of Trident type PRH even experience some extremely hot predicted 

sensations (PMV above +3) during both daytime and nighttime.  

Although the PMV index may be a more representative and internationally accepted approach to assess 

thermal comfort of the building types compared to the measure solely on air temperature, it has not been adapted to 

the local conditions of Hong Kong and may overestimate the thermal sensation of occupants. Therefore, this analysis 

is presented separately from the one using the local air temperature threshold, with the aim to provide a more 

comprehensive description of the thermal comfort conditions of PRH flats in Hong Kong. 

 

3.3.3 Adjusted PMV model 

 Using an adjusted PMV model which incorporates an expectancy factor ‘e’ of 0.7, the corresponding 

distributions of PMV of the discomfort hours for the four building types are shown in Figure 12. Since occupants of 

non-air-conditioned building in warm climates often find relatively high temperatures more tolerable than the standard 

PMV model predicts [47], the intensities of discomfort felt by occupants under near-extreme summer conditions are 

generally less severe according to the adjusted PMV model. No PMV values are found beyond 2.5 for all four building 

types. The distribution patterns for each building type remain similar to that shown in Figure 11, except that the peaks 

in the distribution of discomfort hours for Slab and Trident types PRH flats are now observed between a PMV of 1-

1.5 (rather than 1.5-2), while the peaks for Harmony and Concord types PRH flats fall between a PMV of 0.5-1 (rather 

than 1-1.5). 

 

 With an interest to examine whether the adjusted PMV model can suitably describe the thermal discomfort 

of occupants in Hong Kong PRH flats under near-extreme summer conditions, the number of discomfort hours 

determined from the analyses using the 29.5°C air temperature threshold and an adjusted PMV threshold of 0.85 are 

plotted together in Figure 13. Both thresholds represent an acceptability of 80%. It is worth noting that when using 

the adjusted PMV model, which takes into account parameters other than air temperature, Slab and Trident types PRH 

flats display a worse situation of discomfort, especially at night. On the other hand, thermal conditions in Harmony 



and Concord types PRH flats may be more acceptable than expected in the day for occupants when parameters other 

than air temperature are considered. Moreover, when the adjusted PMV model is used, Concord type PRH perform 

slightly better than Harmony type PRH with respect to the amount of time when occupants feel too warm. Although 

the various durations of thermal discomfort felt by occupants in the different types of PRH are largely comparable in 

terms of the general trend among the building types, it is acknowledged that simulation and model results would need 

to be verified using field survey data in order to assess the appropriateness of the adjusted PMV model for non-air-

conditioned indoor environments in Hong Kong. 

 

3.4 Comparison between TMY and SRY 

 The number of discomfort hours during typical and near-extreme summer conditions are plotted side-by-side 

in Figures 8 and 10. The increase in the proportion of discomfort hours are also shown for each PRH type. This could 

potentially be a measure of climate resilience for the different building types. Based on indoor air temperatures only, 

the increase in discomfort hours is around 10% for all four PRH types. Trident type PRH shows the smallest increase 

in the number of discomfort hours during the day, while Concord type PRH shows the smallest increase in the number 

of discomfort hours during the night. On the other hand, Concord type PRH shows a slightly larger increase in the 

number of discomfort hours during the day, while Slab type PRH shows the largest increase in the number of 

discomfort hours during the night. When the PMV index is considered, the difference in the duration of discomfort 

between typical and near-extreme summer conditions becomes less evident for Slab and Trident types PRH. However, 

there is an obvious 8-10% increase in the proportion of time where occupants experience thermal discomfort for 

Harmony and Concord types PRH. The increase is particularly evident for Concord type PRH in the day. After careful 

examination of the simulation results, the reason for the small increase in discomfort hours for Slab and Trident types 

PRH is found to be due to their already poor performance in typical summer conditions, and not their abilities to resist 

climate change. Considering that their relatively small percentage increases do not imply better thermal comfort under 

near-extreme conditions, it may therefore not be a fair and effective way to evaluate the climate resilience of the 

building types by looking at the increase of discomfort hours over a certain threshold. 

 

3.5 Cooling energy consumption 

 To cope with the high indoor air temperature and poor thermal comfort conditions as described in earlier 

sections, air conditioning is commonly used to cool the indoor environment during summer in Hong Kong. The amount 

of electricity consumed for cooling in summer, normalised by the cooled volume of flats, of the four PRH types is 

presented in Figure 14. With air conditioners operating in the living rooms and bedrooms as specified by the cooling 

schedule, the indoor thermal comfort conditions are significantly improved. Taking Trident type PRH as an example, 

the average PMV for all the simulated flats in summer dropped from +1.2 to +0.09, which is very close to a neutral 

thermal sensation. This proves that the setpoint temperature and cooling schedule have been set reasonably. Trident 

type PRH is found to have the highest total summer cooling load of around 20kWh/m3, Concord type PRH has the 

second highest consumption of 18.7kWh/m3, and Harmony consumes 17.9kWh/m3 of energy for summer cooling. 

Although Slab type PRH is generally the hottest under free-running conditions, it requires only 16.8kWh/m3 to 



maintain the same indoor temperature by mechanical cooling. In search of the explanation for this interesting 

observation, a positive correlation is found between the proportion of exposed cooled space and cooling energy 

consumption. A noticeable feature of a Slab type PRH flat is the setback of its living from the façade, resulting in an 

isolated cooled space from the outdoors (Figure 15). A balcony serves as an indoor-outdoor space to modulate the 

indoor conditions of the living room and maintain a stable indoor temperature. Hence, this may explain the lower 

cooling energy demand for Slab type PRH flats.  

 

3.6 Energy saving potential for Trident type PRH 

 Apart from the setback of the cooled space from the façade, other building design features may also affect 

the cooling energy demand. This section looks into the potential energy savings of various passive design strategies 

on Trident type PRH, which currently has the highest energy consumption. The modifications to the design are detailed 

in Table 4 and the results are shown in Figure 16. Also plotted is the 40% energy reduction target set by the Hong 

Kong government for the year 2025 as a reference. 

All simulations with modifications applied show a reduction in cooling energy consumption. However, none 

is able to achieve an energy saving close to the 40% target. The energy consumption of Trident type PRH with a 

modified U-value is still higher than that of Harmony type PRH, indicating the difference in external wall U-value is 

not the only reason for the difference in cooling energy demand. By adding shading devices to windows, high angle 

solar radiation during midday is shaded from the indoor environment. As a result, energy consumption decreases by 

4.6%. Since creating an unconditioned space between the façade with the largest window and the living room is not 

able to completely isolate the cooled space from the outdoors, this design strategy is not as effective as the setback in 

Slab type PRH flats. Combinations of two of the above three modifications give approximately a doubled energy 

saving potential, but applying all three modifications do not result in a tripled effect. This suggests that in real-life 

situations where more modifications require more resources and higher costs, it may not be cost-effective to 

incorporate all the available modifications. Instead, combinations of the most effective passive design strategies, not 

restricted to the ones examined in this study, should be chosen. 

 

Three distinct building forms are represented by the four typical PRH building types studied – linear, Y-

shaped and cross-shaped. As seen from the thermal comfort analysis of the buildings under free-running conditions, 

the cross-shaped PRH types Harmony and Concord yield similar indoor air temperatures, suggesting a potential 

correlation between building shape and its performance. To investigate the effect of building shapes to building energy 

usage, Trident type PRH flats are rearranged in linear and cross-shaped forms (Figure 5). A linear arrangement with 

the flats facing north and south gives a small reduction in cooling energy consumption, while a substantial 18% of 

cooling energy is saved when flats are arranged in a cross-shape. This may be attributable to the self-shading effect 

by the extended building blocks in a cross-shape. Although it is not possible to rearrange flats in existing building as 

it has been done in the model, these results may inform architects or engineers about which building forms are more 

energy efficient. Furthermore, this simple sensitivity test suggests that it is difficult to achieve the target set by the 



Hong Kong government solely depending on passive building design strategies for high-density residential buildings. 

Therefore, improvements on the active HVAC systems of buildings and changes in human behaviour, such as the 

habit of turning on air conditioners overnight, are also necessary to complement the energy savings due to better 

building designs. 

 

3.7 Implications on building design 

 Although this research is based on a case study in Hong Kong, the application of its findings are not restricted 

by location. Studies have long suggested the merits of high-density and compact cities for sustainability [56, 57]. More 

than half of the global population currently live in cities and the proportion of urban dwellers will continue to grow 

rapidly in the next few decades, especially in developing countries [58]. In order to cater for the massive urban 

population, the world is moving irreversibly towards the need for high-density cities like Hong Kong. However, the 

process of urbanisation is often accompanied by an increase in energy consumption [59, 60]. Moreover, climate change 

exerts extra stress on cities in forms of intensified UHIs, more frequent heat waves, and exacerbated air pollution [61, 

62]. Therefore, it is imperative to build climate resilient cities with thermally comfortable and energy efficient 

buildings to cope with these global challenges. With an understanding on how building designs, including the building 

physical parameters, interior designs of flats and shapes of building blocks, influence the building energy performance, 

the same principles can be applied for future urban developments in Hong Kong, the greater Pearl River Delta, or 

possibly other cities with similar hot and humid climates around the world. Taking this study as a starting point, a 

further parametric study should be conducted with the aim to generalise the research findings for improving the design 

of buildings in high-density high-rise environments. 

 

4. Conclusion 

 In this building simulation study, the indoor thermal comfort and energy performance of four typical PRH 

building types under typical and near-extreme summer conditions in Hong Kong have been evaluated. Under free-

running conditions, the older Slab and Trident types PRH are found to be generally hotter than Harmony and Concord 

types PRH. A more sensitive response of Trident type PRH to changes in outdoor temperatures give rise to its high 

daily maximum air temperatures and large temperature range for the whole summer. During near-extreme summer 

conditions, occupants of all four PRH types experience thermal discomfort for a substantial proportion of the time, 

but the durations and intensities of discomfort vary for each building type. Occupants in Slab type PRH suffer the 

most, with indoor conditions exceeding acceptable comfort thresholds for more than 50% of the time, both during 

daytime and nighttime. On the other hand, Concord type PRH has the least number of discomfort hours. Results 

generally agree for the analyses using a local temperature threshold and an adjusted PMV model for free-running 

buildings in warm climates. All four building types show an approximately 10% increase in the proportion of 

discomfort hours when weather conditions change from typical to near-extreme. Although comparing the results from 

simulations using the TMY and SRY weather files may give an idea of how well the buildings are able to cope with 

climate change, such a comparison alone is insufficient to evaluate the climate resilience of buildings. 



Air conditioning is a common way to mitigate the high indoor temperatures in PRH flats during summer in 

Hong Kong. Results show that Trident type PRH has the highest cooling energy consumption, while Slab type PRH, 

which is the hottest under free-running conditions, requires the least amount of energy for cooling. This may be 

explained by its building design, which features an isolation of its cooled space from the outdoors. To explore how 

passive building designs may have an impact on building energy performance, a simple sensitivity test has been 

conducted for Trident type PRH. Decreasing the external wall U-value, adding shading devices, and setting back the 

cooled space from the façade are all able to reduce the cooling energy consumption of the flats. Besides, a cross-

shaped building form appears to be the most energy efficient. However, to achieve the 40% energy reduction target 

set by the Hong Kong government, better passive building designs must be complemented by other methods to save 

energy, such as improvements on the active HVAC systems and changes in human behaviours. 

 This study is the first to employ the newly developed SRY weather data in building energy simulations. The 

findings provide examples of information that may be useful for improving building designs in high-density urban 

environments under climate change, but are by no means exhaustive in terms of the practical applications of the SRY 

dataset. Certain limitations on the accuracy of the thermal comfort analyses have been acknowledged. Results could 

also be compared with real measurements during episodes of heat waves to validate the simulated outcomes. To further 

the scope of this study, other elements of thermal comfort, such as mean radiant temperatures, relative humidity and 

indoor air speeds, should be considered. EnergyPlus simulations could even be coupled with computational fluid 

dynamics models to evaluate the indoor air movements provided by natural ventilation, which is particularly important 

in hot and humid climates. In addition, more detailed and comprehensive parametric studies on both passive and active 

design strategies would be useful to formulate guidelines for climate resilient building designs that provide better 

thermal comfort in the future. 

 

Acknowledgements 

This work was supported by the General Research Fund from the Research Grants Council of Hong Kong 

(grant number 14603715). 

  



References 

[1] P. Nejat, F. Jomehzadeh, M.M. Taheri, M. Gohari, M.Z.A. Majid, A global review of energy consumption, CO2 

emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries), Renewable 

and sustainable energy reviews. 43 (2015) 843-862. 

[2] N. Fumo, A review on the basics of building energy estimation, Renewable and Sustainable Energy Reviews. 31 

(2014) 53-60. 

[3] A.L. Chan, T. Chow, S.K. Fong, J.Z. Lin, Generation of a typical meteorological year for Hong Kong, Energy 

Conversion and management. 47 (2006) 87-96. 

[4] W. Zhang, L. Lu, J. Peng, A. Song, Comparison of the overall energy performance of semi-transparent photovoltaic 

windows and common energy-efficient windows in Hong Kong, Energy Build. 128 (2016) 511-518. 

[5] X. Chen, H. Yang, Combined thermal and daylight analysis of a typical public rental housing development to fulfil 

green building guidance in Hong Kong, Energy Build. 108 (2015) 420-432. 

[6] A.L. Chan, Developing a modified typical meteorological year weather file for Hong Kong taking into account the 

urban heat island effect, Build. Environ. 46 (2011) 2434-2441. 

[7] CIBSE, Guide J: Weather, solar and illuminance data, Chartered Institution of Building Services Engineers (2002). 

[8] F. Canoui-Poitrine, E. Cadot, A. Spira, Excess deaths during the August 2003 heat wave in Paris, France, Revue 

d'épidémiologie et de santé publique. 54 (2006) 127-135. 

[9] S. Vandentorren, P. Bretin, A. Zeghnoun, L. Mandereau-Bruno, A. Croisier, C. Cochet, J. Riberon, I. Siberan, B. 

Declercq, M. Ledrans, August 2003 heat wave in France: risk factors for death of elderly people living at home, Eur. 

J. Public Health. 16 (2006) 583-591. 

[10] M.F. Jentsch, M.E. Eames, G.J. Levermore, Generating near-extreme Summer Reference Years for building 

performance simulation, Building Services Engineering Research and Technology. 36 (2015) 701-727. 

[11] K.K. Lau, E.Y. Ng, P. Chan, J.C. Ho, Near-extreme summer meteorological data set for sub-tropical climates, 

Building Services Engineering Research and Technology. 38 (2017) 197-208. 

[12] T.N. Lam, K.K. Wan, S. Wong, J.C. Lam, Impact of climate change on commercial sector air conditioning energy 

consumption in subtropical Hong Kong, Appl. Energy. 87 (2010) 2321-2327. 



[13] W. Fung, K. Lam, W. Hung, S. Pang, Y. Lee, Impact of urban temperature on energy consumption of Hong Kong, 

Energy. 31 (2006) 2623-2637. 

[14] E.Y. Chan, W.B. Goggins, J.J. Kim, S.M. Griffiths, A study of intracity variation of temperature-related mortality 

and socioeconomic status among the Chinese population in Hong Kong, J. Epidemiol. Community Health. 66 (2012) 

322-327. 

[15] Y. Ji, R. Fitton, W. Swan, P. Webster, Assessing overheating of the UK existing dwellings–A case study of 

replica Victorian end terrace house, Build. Environ. 77 (2014) 1-11. 

[16] Hong Kong Housing Authority, Housing in Figures 2016 (2016). 

[17] Electrical and Mechanical Services Department, Hong Kong Energy End-use Data 2016 (2016). 

[18] T. Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex, B. Midgley, IPCC, 

2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report 

of the intergovernmental panel on climate change (2013). 

[19] W. Wang, W. Zhou, E.Y.Y. Ng, Y. Xu, Urban heat islands in Hong Kong: statistical modeling and trend detection, 

Nat. Hazards. 83 (2016) 885-907. 

[20] Development Bureau, Planning Department, Hong Kong 2030+ Towards a Planning Vision and Strategy 

Tradescending 2030 - Public Engagement (2016). 

[21] Environment Bureau, Development Bureau, Transport and Housing Bureau, Energy Saving Plan For Hong 

Kong’s Built Environment 2015~2025+ (2015). 

[22] Hong Kong Housing Authority, Housing Authority Property Location and Profile (2017). 

[23] N.M. Mateus, A. Pinto, G.C. da Graça, Validation of EnergyPlus thermal simulation of a double skin naturally 

and mechanically ventilated test cell, Energy Build. 75 (2014) 511-522. 

[24] Z.J. Zhai, M. Johnson, M. Krarti, Assessment of natural and hybrid ventilation models in whole-building energy 

simulations, Energy Build. 43 (2011) 2251-2261. 

[25] S. Shrestha, G. Maxwell, Empirical validation of building energy simulation software: EnergyPlus (2011) 2935-

2942. 

[26] A.H. Neto, F.A.S. Fiorelli, Comparison between detailed model simulation and artificial neural network for 

forecasting building energy consumption, Energy Build. 40 (2008) 2169-2176. 



[27] M. Baharvand, M.H. Ahmad, T. Safikhani, R.A. Majid, DesignBuilder Verification and Validation for Indoor 

Natural Ventilation, Journal of Basic and Applied Scientific Research (JBASR). 3 (2013) 8. 

[28] R. Judkoff, J. Neymark, International Energy Agency building energy simulation test (BESTEST) and diagnostic 

method, National Renewable Energy Lab., Golden, CO (US). No. NREL/TP--472-6231 (1995). 

[29] R.H. Henninger, M.J. Witte, EnergyPlus Testing with ANSI/ASHRAE Standard 140-2001 (BESTEST). 

EnergyPlus Version 1.1. 0.020, Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California, for US 

Department of Energy, Washington, DC (2003). 

[30] X. Chen, H. Yang, W. Zhang, A comprehensive sensitivity study of major passive design parameters for the 

public rental housing development in Hong Kong, Energy. 93 (2015) 1804-1818. 

[31] M. Zhao, H.M. Künzel, F. Antretter, Parameters influencing the energy performance of residential buildings in 

different Chinese climate zones, Energy Build. 96 (2015) 64-75. 

[32] P. Xue, C. Mak, Y. Huang, Quantification of luminous comfort with dynamic daylight metrics in residential 

buildings, Energy Build. 117 (2016) 99-108. 

[33] M. Bojić, F. Yik, Application of advanced glazing to high-rise residential buildings in Hong Kong, Build. Environ. 

42 (2007) 820-828. 

[34] Z. Lin, S. Deng, A study on the characteristics of nighttime bedroom cooling load in tropics and subtropics, Build. 

Environ. 39 (2004) 1101-1114. 

[35] H. Chen, W. Lee, Combined space cooling and water heating system for Hong Kong residences, Energy Build. 

42 (2010) 243-250. 

[36] Environment Bureau, Hong Kong's Climate Action Plan 2030+ (2017). 

[37] W. Lee, H. Chen, Benchmarking Hong Kong and China energy codes for residential buildings, Energy Build. 40 

(2008) 1628-1636. 

[38] Hong Kong Observatory, Monthly Meteorological Normals for Hong Kong (2015). 

[39] P.O. Fanger, Thermal comfort. Analysis and applications in environmental engineering., Copenhagen: Danish 

Technical Press., 1970. 

[40] V. Cheng, E. Ng, Comfort temperatures for naturally ventilated buildings in Hong Kong, Archit. Sci. Rev. 49 

(2006) 179-182. 



[41] ISO Standard, 7730. Ergonomics of the thermal environment—Analytical determination and interpretation of 

thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, International 

Organization for Standardization: Geneva, Switzerland (2005). 

[42] ASHRAE, Standard 55-92, Thermal Environment Conditions for Human Occupancy, ASHRAE, Atlanta (1992). 

[43] A.A. Chowdhury, M. Rasul, M.M.K. Khan, Thermal-comfort analysis and simulation for various low-energy 

cooling-technologies applied to an office building in a subtropical climate, Appl. Energy. 85 (2008) 449-462. 

[44] J. Sage-Lauck, D.J. Sailor, Evaluation of phase change materials for improving thermal comfort in a super-

insulated residential building, Energy Build. 79 (2014) 32-40. 

[45] M.A. Humphreys, J.F. Nicol, The validity of ISO-PMV for predicting comfort votes in every-day thermal 

environments, Energy Build. 34 (2002) 667-684. 

[46] Q.J. Kwong, N.M. Adam, B. Sahari, Thermal comfort assessment and potential for energy efficiency 

enhancement in modern tropical buildings: A review, Energy Build. 68 (2014) 547-557. 

[47] P.O. Fanger, J. Toftum, Extension of the PMV model to non-air-conditioned buildings in warm climates, Energy 

Build. 34 (2002) 533-536. 

[48] H. Djamila, C. Chu, S. Kumaresan, Field study of thermal comfort in residential buildings in the equatorial hot-

humid climate of Malaysia, Build. Environ. 62 (2013) 133-142. 

[49] R.J. De Dear, G.S. Brager, J. Reardon, F. Nicol, Developing an adaptive model of thermal comfort and 

preference/discussion, ASHRAE Trans. 104 (1998) 145. 

[50] J. Van Hoof, Forty years of Fanger’s model of thermal comfort: comfort for all?, Indoor Air. 18 (2008) 182-201. 

[51] F. Nicol, M. Humphreys, S. Roaf, Adaptive thermal comfort: principles and practice, Routledge, 2012. 

[52] D. Coley, T. Kershaw, Changes in internal temperatures within the built environment as a response to a changing 

climate, Build. Environ. 45 (2010) 89-93. 

[53] S.M. Porritt, P.C. Cropper, L. Shao, C.I. Goodier, Ranking of interventions to reduce dwelling overheating during 

heat waves, Energy Build. 55 (2012) 16-27. 

[54] A. Mavrogianni, P. Wilkinson, M. Davies, P. Biddulph, E. Oikonomou, Building characteristics as determinants 

of propensity to high indoor summer temperatures in London dwellings, Build. Environ. 55 (2012) 117-130. 



[55] EnergyPlus Documentation, Engineering reference - EnergyPlus 8.5, The Reference to EnergyPlus Calculation 

(2016). 

[56] E. Ng, Designing high-density cities: for social and environmental sustainability, Routledge, 2009. 

[57] Y.R. Jabareen, Sustainable urban forms their typologies, models, and concepts, Journal of planning education 

and research. 26 (2006) 38-52. 

[58] United Nations, World Urbanization Prospects: The 2014 Revision, Highlights. Department of Economic and 

Social Affairs, Population Division, United Nations (2014). 

[59] Y. Chen, X. Li, Y. Zheng, Y. Guan, X. Liu, Estimating the relationship between urban forms and energy 

consumption: a case study in the Pearl River Delta, 2005–2008, Landscape Urban Plann. 102 (2011) 33-42. 

[60] R. Madlener, Y. Sunak, Impacts of urbanization on urban structures and energy demand: What can we learn for 

urban energy planning and urbanization management?, Sustainable Cities and Society. 1 (2011) 45-53. 

[61] C. Rosenzweig, W.D. Solecki, S.A. Hammer, S. Mehrotra, Climate change and cities: First assessment report of 

the urban climate change research network, Cambridge University Press, 2011. 

[62] M.P. McCarthy, M.J. Best, R.A. Betts, Climate change in cities due to global warming and urban effects, Geophys. 

Res. Lett. 37 (2010). 

  

  



 
Figure 1 Layout plans of the (a) Slab, (b) Trident, (c) Harmony and (d) Concord type PRH in Hong Kong 

 (plans are not drawn to the same scale). 

 
Figure 2 (a) On Chiu House (Trident type) in Cheung On Estate and generic models of (b) the whole building, (b) 

mid-floor flats and (c) a partitioned flat constructed in DesignBuilder. 



 
Figure 3 Monthly means of daily maximum, mean and minimum temperature 

recorded at the Hong Kong Observatory between 1981 and 2010. 

 
Figure 4 Comfort temperature chart for naturally ventilated buildings in Hong Kong (used with permission from 

Cheng and Ng [40]). 



 
Figure 5 Models of the Trident PRH flats with modified building forms (a) A, 

resembling Slab and (b) B, resembling Harmony or Concord building types. 

 



 
Figure 6 (a) Maximum, (b) median, and (c) minimum outdoor air temperatures and simulated indoor air 

temperatures of the four PRH types under free-running conditions during near-extreme summer conditions, 

as represented by the SRY weather dataset. Indoor air temperatures presented have been averaged over all 

simulated flats. The 29.5°C maximum acceptable indoor air temperature for thermal comfort is marked in 

red in (b) for reference. 



 
Figure 7 Simulated indoor air temperatures against outdoor air temperatures for (a) Slab, (b) Trident, (c) Harmony, 

and (d) Concord types PRH. Comparisons of the responses of buildings to outdoor temperature changes during (e) 

daytime and (f) nighttime (dashed lines). 



 
Figure 8 Durations of thermal discomfort in the four PRH types, using the air temperature threshold of 29.5°C, and 

the comparison between typical and near-extreme summer conditions during (a,b) daytime and (c,d) nighttime.  

 
Figure 9 Temperature distribution of the discomfort hours for the four PRH types during (a) daytime and (b) nighttime 

under near-extreme summer conditions. 



 
Figure 10 Durations of thermal discomfort in the four PRH types, using the PMV threshold of +0.5, and the 

comparison between typical and near-extreme summer conditions during (a,b) daytime and (c,d) nighttime. 

 
Figure 11 PMV distribution of the discomfort hours for the four PRH types during (a) daytime and (b) nighttime under 

near-extreme summer conditions. 



 
Figure 12 Adjusted PMV (e = 0.7) distribution of the discomfort hours for the four PRH types during (a) daytime and 

(b) nighttime under near-extreme summer conditions. 

 
Figure 13  Comparison of the durations of thermal discomfort in the four PRH types when using the air temperature 

threshold of 29.5°C and an adjusted PMV (e = 0.7) threshold of 0.85, under near-extreme summer conditions. 

 
Figure 14 Total normalised cooling energy consumption of the four 

PRH types during near-extreme summer conditions. 



 
Figure 15 Layout plan of a Slab type PRH flat with 

an isolated cooled space. 



 
Figure 16 (a) Normalised cooling energy consumption and (b) potential energy savings when 

various design strategies are applied. 

 

  



Table 1 General information of the four typical PRH building types and reference estates in Hong Kong. 

Building Type Slab Trident Harmony Concord 

Reference PRH estate Wo Che Estate Cheung On Estate Sheung Tak Estate Yat Tung (I) Estate 

Year of intake 1977 1988 1998 2001 

No. of storeys 13 35 42 40 

No. of flats per storey 32 24 18 8 

Flat sizes (m2) 26.8 – 28.0 31.9 – 44.3 16.0 – 50.8 35.3 – 45.9 

 
  



Table 2 Building physical parameters, construction materials and their properties used in the simulations. 

 Slab Trident Harmony Concord 

Building physical parameters     

Floor height (m)  2.6 2.7 2.7 2.75 

Total occupied floor area (m2) 842.5 920.6 670.5 325.1 

Cooled area (i.e. living room, bedroom) (m2) 555.4 731.2 506.2 256.8 

Window/hole to external wall ratio 0.304 0.305 0.167 0.148 

Building construction     

External wall (outside to inside)     

U-value (W m-2 K-1) 3.13 3.33 2.88 2.75 

- Mosaic Tile (mm) 5 

- Concrete Gypsum Plasterboard (mm) 10 

- Concrete (mm) 175 135 235 272 

- Gypsum Plastering (mm) 13 

Roof     

U-value (W m-2 K-1) 0.58 

- Asphalt Mastic Roofing (mm) 20 

- Expanded Polystyrene (mm) 50 

- Reinforced Concrete (mm) 200 

- Gypsum Plasterboard (mm) 13 

Internal partition     

U-value (W m-2 K-1) 2.86 

- Gypsum Plaster (mm) 10 

- Concrete (mm) 80 

- Gypsum Plaster (mm) 10 

Floor slab     

U-value (W m-2 K-1) 2.48 

- Floor Tiles (mm) 10 

- Reinforced Concrete (mm) 180 

- Gypsum Plasterboard (mm) 10 

Glazing     

U-value (W m-2 K-1) 5.75 

- Clear Float Glass (mm) 6 

 
  



Table 3 Summary of the outdoor and simulated indoor air temperatures and temperature ranges of the four 

PRH building types. The highest temperature/largest range is highlighted in red, the lowest 

temperature/smallest range is highlighted in blue. 

Air temperature (°C) Outdoor Slab Trident Harmony Concord 

Maximum 34.90 33.81 34.32 33.04 33.42 

Quartile 3 29.63 30.90 30.73 30.15 30.11 

Medium 28.20 29.71 29.41 28.92 28.89 

Quartile 1 26.53 28.26 27.90 27.45 27.42 

Minimum 21.43 23.63 23.09 22.88 22.85 

Range 13.47 10.18 11.23 10.16 10.57 

 
  



Table 4 Detailed explanation of the modifications applied to Trident type PRH for the sensitivity test. 

Modification Explanation 

U-value The external wall U-value of is reduced from 3.33 Wm-2K-1 to 2.88 Wm-2K-1, which is the same 

as Harmony type PRH. 

Shade 1m overhang shading devices are added on top of all windows. 

Setback An internal partition, with a 0.6m wide door (same as the balcony of Slab type PRH), is added 

approx. 2.4m from the façade with the largest window in the living room. 

U+Sha A combination of ‘U-value’ and ‘shading’ is applied. 

Sha+Set A combination of ‘shading’ and ‘setback’ is applied. 

U+Set A combination of ‘U-value’ and ‘setback’ is applied. 

U+Set+Sha A combination of ‘U-value’, ‘setback’ and ‘shading’ is applied. 

Form A Trident PRH flats are arranged in a building form that resembles Slab type PRH (Figure 5a) 

Form B Trident PRH flats are arranged in a building form that resembles Harmony or Concord type PRH 

(Figure 5b) 
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