308 research outputs found

    Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.

    Get PDF
    The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources

    Temporal dynamics of catchment transit times from stable isotope data

    Get PDF
    Time variant catchment transit time distributions are fundamental descriptors of catchment function but yet not fully understood, characterized, and modeled. Here we present a new approach for use with standard runoff and tracer data sets that is based on tracking of tracer and age information and time variant catchment mixing. Our new approach is able to deal with nonstationarity of flow paths and catchment mixing, and an irregular shape of the transit time distribution. The approach extracts information on catchment mixing from the stable isotope time series instead of prior assumptions of mixing or the shape of transit time distribution. We first demonstrate proof of concept of the approach with artificial data; the Nash-Sutcliffe efficiencies in tracer and instantaneous transit times were >0.9. The model provides very accurate estimates of time variant transit times when the boundary conditions and fluxes are fully known. We then tested the model with real rainfall-runoff flow and isotope tracer time series from the H.J. Andrews Watershed 10 (WS10) in Oregon. Model efficiencies were 0.37 for the 18O modeling for a 2 year time series; the efficiencies increased to 0.86 for the second year underlying the need of long time tracer time series with a long overlap of tracer input and output. The approach was able to determine time variant transit time of WS10 with field data and showed how it follows the storage dynamics and related changes in flow paths where wet periods with high flows resulted in clearly shorter transit times compared to dry low flow periods. Key Points: Approach for time variant catchment transit time Modeling irregular shape of transit time distributions by time variant mixing Modeling catchment transit time in WS10 of HJA Fores

    Importance of tree diameter and species for explaining the temporal and spatial variations of xylem water Ī“18O and Ī“2H in a multi-species forest

    Get PDF
    Publication history: Accepted - 17 March 2023; Published online - 23 May 2023.Identifying the vegetation and topographic variables influencing the isotopic variability of xylem water of forest vegetation remains crucial to interpret and predict ecohydrological processes in landscapes. In this study, we used temporally and spatially distributed xylem stable water isotopes measurements from two growing seasons to examine the temporal and spatial variations of xylem stable water isotopes and their relationships with vegetation and topographic variables in a Luxembourgish temperate mixed forest. Species-specific temporal variations of xylem stable water isotopes were observed during both growing seasons with a higher variability for beeches than oaks. Principal component regressions revealed that tree diameter at breast height explains up to 55% of the spatial variability of xylem stable water isotopes, while tree species explains up to 24% of the variability. Topographic variables had a marginal role in explaining the spatial variability of xylem stable water isotopes (up to 6% for elevation). During the drier growing season (2020), we detected a higher influence of vegetation variables on xylem stable water isotopes and a lower temporal variability of the xylem water isotopic signatures than during the wetter growing season (2019). Our results reveal the dominant influence of vegetation on xylem stable water isotopes across a forested area and suggest that their spatial patterns arise mainly from size- and species-specific as well as water availability-dependent water use strategies rather than from topographic heterogeneity. The identification of the key role of vegetation on xylem stable water isotopes has critical implications for the representativity of isotopes-based ecohydrological and catchments studies.This work was supported by the Luxembourg National Research Fund (FNR/CORE/C17/SR/11702136/EFFECT). The second author is supported by the Accelerator Programme (AP) 2022-24 and the Starter Scheme by the University of the West of England, Bristol

    An analysis of the carbon balance of the Arctic Basin from 1997 to 2006

    Get PDF
    Author Posting. Ā© The Authors, 2010. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Tellus B 62 (2010): 455-474, doi:10.1111/j.1600-0889.2010.00497.x.This study used several model-based tools to analyze the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr-1 and that the Arctic Ocean gained 94.1 Tg C yr-1. Arctic lands and oceans were a net CO2 sink of 108.9 Tg C yr-1, which is within the range of uncertainty in estimates from atmospheric inversions. Although both lands and oceans of the Arctic were estimated to be CO2 sinks, the land sink diminished in strength because of increased fire disturbance compared to previous decades, while the ocean sink increased in strength because of increased biological pump activity associated with reduced sea ice cover. Terrestrial areas of the Arctic were a net source of 41.5 Tg CH4 yr-1 that increased by 0.6 Tg CH4 yr-1 during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH4. Because the radiative forcing of the estimated CH4 emissions is much greater than the CO2 sink, the analysis suggests that the Arctic Basin is a substantial net source of green house gas forcing to the climate system.This study was supported, in part, by the NSF Arctic System Science Program as part of the Arctic Carbon Cycle Synthesis Project (ARC-0531047, 0531082, 0531119, and 0554811)

    In Vivo Fluorescent Detection of Fe-S Clusters Coordinated by Human GRX2

    Get PDF
    A major challenge to studying Fe-S cluster biosynthesis in higher eukaryotes is the lack of simple tools for imaging metallocluster binding to proteins. We describe the first fluorescent approach for in vivo detection of 2Fe2S clusters that is based upon the complementation of Venus fluorescent protein fragments via human glutaredoxin 2 (GRX2) coordination of a 2Fe2S cluster. We show that Escherichia coli and mammalian cells expressing Venus fragments fused to GRX2 exhibit greater fluorescence than cells expressing fragments fused to a C37A mutant that cannot coordinate a metallocluster. In addition, we find that maximal fluorescence in the cytosol of mammalian cells requires the iron-sulfur cluster assembly proteins ISCU and NFS1. These findings provide evidence that glutaredoxins can dimerize within mammalian cells through coordination of a 2Fe2S cluster as observed with purified recombinant proteins

    Diagnosis and management of functional tic-like phenomena

    Get PDF
    Over the past 3 years, a global phenomenon has emerged characterized by the sudden onset and frequently rapid escalation of tics and tic-like movements and phonations. These symptoms have occurred not only in youth known to have tics or Tourette syndrome (TS), but also, and more notably, in youth with no prior history of tics. The Tourette Association of America (TAA) convened an international, multidisciplinary working group to better understand this apparent presentation of functional neurological disorder (FND) and its relationship to TS. Here, we review and summarize the literature relevant to distinguish the two, with recommendations to clinicians for diagnosis and management. Finally, we highlight areas for future emphasis and research

    Individual variation in levels of haptoglobin-related protein in children from Gabon

    Get PDF
    Background: Haptoglobin related protein (Hpr) is a key component of trypanosome lytic factors (TLF), a subset of highdensity lipoproteins (HDL) that form the first line of human defence against African trypanosomes. Hpr, like haptoglobin (Hp) can bind to hemoglobin (Hb) and it is the Hpr-Hb complexes which bind to these parasites allowing uptake of TLF. This unique form of innate immunity is primate-specific. To date, there have been no population studies of plasma levels of Hpr, particularly in relation to hemolysis and a high prevalence of ahaptoglobinemia as found in malaria endemic areas. Methods and Principal Findings: We developed a specific enzyme-linked immunosorbent assay to measure levels of plasma Hpr in Gabonese children sampled during a period of seasonal malaria transmission when acute phase responses (APR), malaria infection and associated hemolysis were prevalent. Median Hpr concentration was 0.28 mg/ml (range 0.03-1.1). This was 5-fold higher than that found in Caucasian children (0.049 mg/ml, range 0.002-0.26) with no evidence of an APR. A general linear model was used to investigate associations between Hpr levels, host polymorphisms, parasitological factors and the acute phase proteins, Hp, C-reactive protein (CRP) and albumin. Levels of Hpr were associated with Hp genotype, decreased with age and were higher in females. Hpr concentration was strongly correlated with that of Hp, but not CRP
    • ā€¦
    corecore