114 research outputs found

    Conjugacy Classes of Triple Products in Finite Groups

    Get PDF
    Let G be a finite group and let T1 be the number of times a triple (x, y, z) ∈ G3 binds X, where X = {xyz, xzy, yxz, yzx, zxy, zyx}, to one conjugacy class. Let T2 denote the number of times a triple G3 breaks X into two conjugacy classes. We have established the following results: i) the probability that a triple (x, y, z) ∈ D3n binds X to one contingency class is ≥ 5/8. ii) for groups such that 2|Z(G)||G\u27|=|G|, T2≥3(|Z(G)|)3|G\u27|(|G\u27|-1)2

    Conjugacy Classes of Triple Products in Finite Groups

    Get PDF
    For an underlying finite group G, we establish estimates on the number of triples that bind a certain set to one conjugacy class, or else breaks it into two conjugacy classes

    Math and the Mouse: Explorations of Mathematics and Science in Walt Disney World

    Get PDF
    Math and the Mouse is an intensive, collaborative, project-driven, study away course that runs during the three-week May Experience term at Furman University and has many of the attributes of a course-based undergraduate research experience in mathematics. We take twelve students to Orlando, Florida to study the behind-the-scenes mathematics employed to make Walt Disney World operate efficiently. Students learn techniques of mathematical modeling (mostly resource allocation, logistics, and scheduling models), statistical analysis (mostly probability, clustering, data collection, and hypothesis testing), and ow management (queuing theory and some beginning ow dynamics) in an applied setting. Through planned course modules, collaborative activities, conversations with guest speakers, and three group projects, one of which is of the students\u27 choosing, this academic experience provides an engaged learning experience that shows how material from eleven academic courses comes together in connection with real-world applications

    Faster, Faster! Touring Disney

    Get PDF

    Mahasiswa Diseru Terokai Bidang Keusahawanan

    Get PDF
    USM KUBANG KERIAN, 11 Mac 2018 – “Mahasiswa yang masih lagi melanjutkan pelajaran di Institusi Pengajian Tinggi (IPT) digalakkan menceburi bidang keusahawanan walaupun masih bergelar pelajar”, demikian perkongsian Pengerusi Koperasi Ko-Ummah yang juga Alumni Universiti Sains Malaysia (USM), Luqman Nurhakim Perma Suria

    Monkeypox Disease Transmission in an Experimental Setting: Prairie Dog Animal Model

    Get PDF
    Monkeypox virus (MPXV) is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox). MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus) and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively). Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission

    Assessment of cochlear synaptopathy by electrocochleography to low frequencies in a preclinical model and human subjects

    Get PDF
    Cochlear synaptopathy is the loss of synapses between the inner hair cells and the auditory nerve despite survival of sensory hair cells. The findings of extensive cochlear synaptopathy in animals after moderate noise exposures challenged the long-held view that hair cells are the cochlear elements most sensitive to insults that lead to hearing loss. However, cochlear synaptopathy has been difficult to identify in humans. We applied novel algorithms to determine hair cell and neural contributions to electrocochleographic (ECochG) recordings from the round window of animal and human subjects. Gerbils with normal hearing provided training and test sets for a deep learning algorithm to detect the presence of neural responses to low frequency sounds, and an analytic model was used to quantify the proportion of neural and hair cell contributions to the ECochG response. The capacity to detect cochlear synaptopathy was validated in normal hearing and noise-exposed animals by using neurotoxins to reduce or eliminate the neural contributions. When the analytical methods were applied to human surgical subjects with access to the round window, the neural contribution resembled the partial cochlear synaptopathy present after neurotoxin application in animals. This result demonstrates the presence of viable hair cells not connected to auditory nerve fibers in human subjects with substantial hearing loss and indicates that efforts to regenerate nerve fibers may find a ready cochlear substrate for innervation and resumption of function

    Detection of North American orthopoxviruses by real time-PCR

    Get PDF
    The prevalence of North American orthopoxviruses in nature is unknown and may be more difficult to ascertain due to wide spread use of vaccinia virus recombinant vaccines in the wild. A real time PCR assay was developed to allow for highly sensitive and specific detection of North American orthopoxvirus DNA in animal tissues and bodily fluids. This method is based on the amplification of a 156 bp sequence within a myristylated protein, highly conserved within the North American orthopoxviruses but distinct from orthologous genes present in other orthopoxviruses. The analytical sensitivity was 1.1 fg for Volepox virus DNA, 1.99 fg for Skunkpox virus DNA, and 6.4 fg for Raccoonpox virus DNA with a 95% confidence interval. Our assay did not cross-react with other orthopoxviruses or ten diverse representatives of the Chordopoxvirinae subfamily. This new assay showed more sensitivity than tissue culture tests, and was capable of differentiating North American orthopoxviruses from other members of Orthopoxvirus. Thus, our assay is a promising tool for highly sensitive and specific detection of North American orthopoxviruses in the United States and abroad

    Mechanical Stress Inference for Two Dimensional Cell Arrays

    Get PDF
    Many morphogenetic processes involve mechanical rearrangement of epithelial tissues that is driven by precisely regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the targets of regulation, but are themselves likely signals that coordinate developmental process. Yet, because it is difficult to directly measure mechanical stress {\it in vivo} on sub-cellular scale, little is understood about the role of mechanics of development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the {\it Drosophila} embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics

    Helium nanodroplet isolation ro-vibrational spectroscopy: methods and recent results

    Get PDF
    In this article, recent developments in HElium NanoDroplet Isolation (HENDI) spectroscopy are reviewed, with an emphasis on the infrared region of the spectrum. Topics discussed include experimental details, comparison of radiation sources, symmetry issues of the helium solvation structure, sources of line broadening, changes in spectroscopic constants upon solvation, and applications including formation of novel chemical structures.Comment: 24 pages, 8 figures, 3 tables; to be published in the Journal of Chemical Physic
    corecore