354 research outputs found

    Women are underrepresented in computational biology:An analysis of the scholarly literature in biology, computer science and computational biology

    Get PDF
    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance

    Fabrication of Electrochemical-DNA Biosensors for the Reagentless Detection of Nucleic Acids, Proteins and Small Molecules

    Get PDF
    As medicine is currently practiced, doctors send specimens to a central laboratory for testing and thus must wait hours or days to receive the results. Many patients would be better served by rapid, bedside tests. To this end our laboratory and others have developed a versatile, reagentless biosensor platform that supports the quantitative, reagentless, electrochemical detection of nucleic acids (DNA, RNA), proteins (including antibodies) and small molecules analytes directly in unprocessed clinical and environmental samples. In this video, we demonstrate the preparation and use of several biosensors in this "E-DNA" class. In particular, we fabricate and demonstrate sensors for the detection of a target DNA sequence in a polymerase chain reaction mixture, an HIV-specific antibody and the drug cocaine. The preparation procedure requires only three hours of hands-on effort followed by an overnight incubation, and their use requires only minutes

    Rethinking Strategies for Positive Newborn Screening Result (NBS+) Delivery (ReSPoND): a process evaluation of co-designing interventions to minimise impact on parental emotional well-being and stress.

    Get PDF
    BACKGROUND: Newborn blood spot (NBS) screening seeks to prevent ill health, disability and death through early diagnosis and effective intervention. Each year, around 10,000 parents of babies born in England are given a positive NBS result indicating their child may be affected or carriers of one of the nine conditions currently screened for. Despite guidance, these results are inconsistently delivered to parents across geographical regions. There is evidence that many parents are dissatisfied with how NBS results are communicated to them and that poor communication practices can lead to various negative sequelae. The purpose of this study is to co-design, implement and undertake a process evaluation of new, co-designed interventions to improve delivery of initial positive NBS results to parents. METHODS: This mixed-methods study will use four phases with defined outputs. Family Systems Theory will form the theoretical basis for the study. The principles and methods of experience-based co-design will underpin intervention development. Normalisation Process Theory will underpin the process evaluation of the interventions co-designed to improve the delivery of positive NBS results to parents. An economic analysis will determine resource use and costs of current practice and of implementing the new co-designed interventions. The nominal group technique will be used to inform the selection of suitable outcome measures for a future evaluation study. DISCUSSION: The main output of the proposed study will be co-designed interventions for initial communication of positive NBS results to parents ready to be evaluated in a definitive evaluation study.The interventions, co-designed with parents, will help to minimise potential negative sequelae associated with poor communication practices by considering parental and staff experiences as well as healthcare challenges such as finite resources. In addition, information about indicative costs associated with different communication strategies will be determined.It is anticipated it may also be possible to extrapolate principles of good communication practices from the present study for the delivery of bad news to parents for children newly diagnosed with other conditions including cancer and other chronic conditions such as diabetes or epilepsy. TRIAL REGISTRATION: ISRCTN 15330120 date of registration 17/01/2018

    CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational Applications

    Get PDF
    Although potentiostats are the foundation of modern electrochemical research, they have seen relatively little application in resource poor settings, such as undergraduate laboratory courses and the developing world. One reason for the low penetration of potentiostats is their cost, as even the least expensive commercially available laboratory potentiostats sell for more than one thousand dollars. An inexpensive electrochemical workstation could thus prove useful in educational labs, and increase access to electrochemistry-based analytical techniques for food, drug and environmental monitoring. With these motivations in mind, we describe here the CheapStat, an inexpensive (<$80), open-source (software and hardware), hand-held potentiostat that can be constructed by anyone who is proficient at assembling circuits. This device supports a number of potential waveforms necessary to perform cyclic, square wave, linear sweep and anodic stripping voltammetry. As we demonstrate, it is suitable for a wide range of applications ranging from food- and drug-quality testing to environmental monitoring, rapid DNA detection, and educational exercises. The device's schematics, parts lists, circuit board layout files, sample experiments, and detailed assembly instructions are available in the supporting information and are released under an open hardware license

    Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes

    Get PDF
    Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis

    Deep-sea microbes as tools to refine the rules of innate immune pattern recognition.

    Full text link
    The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter. These bacteria were cultivated from the deep Pacific Ocean, where the genus Moritella was identified as a common constituent of the culturable microbiota. Most deep-sea bacteria contained cell wall lipopolysaccharide (LPS) structures that were expected to be immunostimulatory, and some deep-sea bacteria activated inflammatory responses from mammalian LPS receptors. However, LPS receptors were unable to detect 80% of deep-sea bacteria examined, with LPS acyl chain length being identified as a potential determinant of immunosilence. The inability of immune receptors to detect most bacteria from a different ecosystem suggests that pattern recognition strategies may be defined locally, not globally.R01 AI093589 - NIAID NIH HHS; P30 DK034854 - NIDDK NIH HHS; U19 AI133524 - NIAID NIH HHS; R01 AI147314 - NIAID NIH HHS; R01 AI116550 - NIAID NIH HHS; R37 AI116550 - NIAID NIH HHS; R01 AI123820 - NIAID NIH HHSAccepted manuscrip
    corecore