426 research outputs found
High Resolution CO Observations of Massive Star Forming Regions
Context. To further understand the processes involved in the formation of
massive stars, we have undertaken a study of the gas dynamics surrounding three
massive star forming regions. By observing the large scale structures at high
resolution, we are able to determine properties such as driving source, and
spatially resolve the bulk dynamical properties of the gas such as infall and
outflow. Aims. With high resolution observations, we are able to determine
which of the cores in a cluster forming massive stars is responsible for the
large scale structures. Methods. We present CO observations of three massive
star forming regions with known HII regions and show how the CO traces both
infall and outflow. By combining data taken in two SMA configurations with JCMT
observations, we are able to see large scale structures at high resolution.
Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17
\times 10^44 erg) outflows emanating from the edges of two HII regions
suggesting they are being powered by the protostar(s) within. We find infall
signatures in two of our sources with mass infall rates of order 10-4 M_sun/yr.
Conclusions. We suggest that star formation is ongoing in these sources despite
the presence of HII regions. We further conclude that the source(s) within a
single HII region are responsible for the observed large scale structures; that
these large structures are not the net effect of multiple outflows from
multiple HII regions and hot cores.Comment: 8 pages,2 figures, accepted for publication in A&
Oscillating Starless Cores: The Nonlinear Regime
In a previous paper, we modeled the oscillations of a thermally-supported
(Bonnor-Ebert) sphere as non-radial, linear perturbations following a standard
analysis developed for stellar pulsations. The predicted column density
variations and molecular spectral line profiles are similar to those observed
in the Bok globule B68 suggesting that the motions in some starless cores may
be oscillating perturbations on a thermally supported equilibrium structure.
However, the linear analysis is unable to address several questions, among them
the stability, and lifetime of the perturbations. In this paper we simulate the
oscillations using a three-dimensional numerical hydrodynamic code. We find
that the oscillations are damped predominantly by non-linear mode-coupling, and
the damping time scale is typically many oscillation periods, corresponding to
a few million years, and persisting over the inferred lifetime of gobules.Comment: 7 pages, 7 figures, accepted by Ap
The Evolution of Cloud Cores and the Formation of Stars
For a number of starless cores, self-absorbed molecular line and column
density observations have implied the presence of large-amplitude oscillations.
We examine the consequences of these oscillations on the evolution of the cores
and the interpretation of their observations. We find that the pulsation energy
helps support the cores and that the dissipation of this energy can lead toward
instability and star formation. In this picture, the core lifetimes are limited
by the pulsation decay timescales, dominated by non-linear mode-mode coupling,
and on the order of ~few x 10^5--10^6 yr. Notably, this is similar to what is
required to explain the relatively low rate of conversion of cores into stars.
For cores with large-amplitude oscillations, dust continuum observations may
appear asymmetric or irregular. As a consequence, some of the cores that would
be classified as supercritical may be dynamically stable when oscillations are
taken into account. Thus, our investigation motivates a simple hydrodynamic
picture, capable of reproducing many of the features of the progenitors of
stars without the inclusion of additional physical processes, such as
large-scale magnetic fields.Comment: 12 pages, 7 figures, submitted to Ap
Is protostellar heating sufficient to halt fragmentation? A case study of the massive protocluster G8.68-0.37
If star formation proceeds by thermal fragmentation and the subsequent
gravitational collapse of the individual fragments, how is it possible to form
fragments massive enough for O and B stars in a typical star-forming molecular
cloud where the Jeans mass is about 1Msun at the typical densities (10^4 cm^-3)
and temperatures (10K)? We test the hypothesis that a first generation of
low-mass stars may heat the gas enough that subsequent thermal fragmentation
results in fragments >=10Msun, sufficient to form B stars. We combine ATCA and
SMA observations of the massive star-forming region G8.68-0.37 with radiative
transfer modeling to derive the present-day conditions in the region and use
this to infer the conditions in the past, at the time of core formation.
Assuming the current mass/separation of the observed cores equals the
fragmentation Jeans mass/length and the region's average density has not
changed, requires the gas temperature to have been 100K at the time of
fragmentation. The postulated first-generation of low-mass stars would still be
around today, but the number required to heat the cloud exceeds the limits
imposed by the observations. Several lines of evidence suggest the observed
cores in the region should eventually form O stars yet none have sufficient raw
material. Even if feedback may have suppressed fragmentation, it was not
sufficient to halt it to this extent. To develop into O stars, the cores must
obtain additional mass from outside their observationally defined boundaries.
The observations suggest they are currently fed via infall from the very
massive reservoir (~1500Msun) of gas in the larger pc scale cloud around the
star-forming cores. This suggests that massive stars do not form in the
collapse of individual massive fragments, but rather in smaller fragments that
themselves continue to gain mass by accretion from larger scales.Comment: 23 pages, 14 figures. Accepted for publication in Ap
Rotation of the pre-stellar core L1689B
The search for the onset of star formation in pre-stellar cores has focussed
on the identification of an infall signature in the molecular line profiles of
tracer species. The classic infall signature is a double peaked line profile
with an asymmetry in the strength of the peaks such that the blue peak is
stronger. L1689B is a pre-stellar core and infall candidate but new JCMT HCO+
line profile data, presented here, confirms that both blue and red asymmetric
line profiles are present in this source. Moreover, a dividing line can be
drawn between the locations where each type of profile is found. It is argued
that it is unlikely that the line profiles can be interpreted with simple
models of infall or outflow and that rotation of the inner regions is the most
likely explanation. A rotational model is developed in detail with a new 3D
molecular line transport code and it is found that the best type of model is
one in which the rotational velocity profile is in between solid body and
Keplerian. It is firstly shown that red and blue asymmetric line profiles can
be generated with a rotation model entirely in the absence of any infall
motion. The model is then quantitively compared with the JCMT data and an
iteration over a range of parameters is performed to minmize the difference
between the data and model. The results indicate that rotation can dominate the
line profile shape even before the onset of infall.Comment: Accepted by MNRAS, 7 pages, 4 figure
High Resolution Molecular Gas Maps of M33
New observations of CO (J=1->0) line emission from M33, using the 25 element
BEARS focal plane array at the Nobeyama Radio Observatory 45-m telescope, in
conjunction with existing maps from the BIMA interferometer and the FCRAO 14-m
telescope, give the highest resolution (13'') and most sensitive (RMS ~ 60 mK)
maps to date of the distribution of molecular gas in the central 5.5 kpc of the
galaxy. A new catalog of giant molecular clouds (GMCs) has a completeness limit
of 1.3 X 10^5 M_sun. The fraction of molecular gas found in GMCs is a strong
function of radius in the galaxy, declining from 60% in the center to 20% at
galactocentric radius R_gal ~ 4 kpc. Beyond that radius, GMCs are nearly
absent, although molecular gas exists. Most (90%) of the emission from low mass
clouds is found within 100 pc projected separation of a GMC. In an annulus 2.1<
R_gal <4.1 kpc, GMC masses follow a power law distribution with index -2.1.
Inside that radius, the mass distribution is truncated, and clouds more massive
than 8 X 10^5 M_sun are absent. The cloud mass distribution shows no
significant difference in the grand design spiral arms versus the interarm
region. The CO surface brightness ratio for the arm to interarm regions is 1.5,
typical of other flocculent galaxies.Comment: 14 pages, 14 figures, accepted in ApJ. Some tables poorly typeset in
emulateapj; see source files for raw dat
CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483
CO isotopes are able to probe the different components in protostellar
clouds. These components, core, envelope and outflow have distinct physical
conditions and sometimes more than one component contributes to the observed
line profile. In this study we determine how CO isotope abundances are altered
by the physical conditions in the different components. We use a 3D molecular
line transport code to simulate the emission of four CO isotopomers, 12CO
J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483,
which contains a cold quiescent core, an infalling envelope and a clear
outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line
observations with the inclusion of freeze-out, a density profile and infall.
Our model profiles of 12CO and 13CO have a large linewidth due to a high
velocity jet. These profiles replicate the process of more abundant material
being susceptible to a jet. C18O and C17O do not display such a large linewidth
as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table
- …
